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Abstract 
The i-vector model is widely used by the state-of-the-art 
speaker recognition system. We proposed a new Mahalanobis 
metric scoring learned from weighted pairwise constraints 
(WPCML), which use the different weights for the empirical 
error of the similar and dissimilar pairs. In the new i-vector 
space described by the metric, the distance between the same 
speaker’s i-vectors is small, while that of the different 
speakers’ is large. In forming the training set, we use the 
traditional way in random fashion and develop a new nearest 
distance based way. The results on the NIST 2008 telephone 
data shown that our model can get better performance than the 
classical cosine similarity scoring. When using the nearest 
distance based way to form the training set, our model is better 
than the state-of-the-art PLDA. And the results on the NIST 
2014 i-vector challenge show that our model is also better than 
the PLDA. 
Index Terms: speaker recognition, Mahalanobis metric 
scoring, i-vector model 

1. Introduction 
The i-vector [1] based technique represent the state-of-the-art 
in speaker recognition [2]. A low dimensional i–vector is a 
compact representation of a supervector of Gaussian Mixture 
Model (GMM) [3], which captures most information of the 
high dimensional supervector variability. As i-vectors contain 
both speaker and channel variability, there is a requirement 
that intersession compensation approaches should be 
implemented to reduce the effects of channel variability in the 
i-vector speaker representations. Consequently, raw i-vectors 
are not suited for speaker discrimination directly and should be 
handled by intersession variability compensation methods, 
such as Linear Discriminative Analysis (LDA) [4] and Within-
Class Covariance Normalization (WCCN) [5], which are 
performed to reduce the variability and enhance discrimination. 
Moreover, length normalization [6] is to reduce mismatch and 
allow for effective scoring. The cosine similarity scoring [7] 
for a trial between a set of i-vectors is used for its 
effectiveness and simplicity, and the state-of-the-art 
probabilistic linear discriminant analysis (PLDA) [8] based 
scoring generally shows relatively good properties. 

Cumani [9] rewrote the log-likelihood ratio score in the 
PLDA as a dot-product in an i–vector pairs expanded space, 
and proposed the use of a 2nd order SVM kernel for the binary 
classification of basic trials. Like that, the Mahalanobis 
distance can also be rewrote as a quadratic function of the i-
vector pair in a trial, and has been used for speaker recognition 
scoring [10]. In this paper, we also use the Mahalanobis-based 
scoring to measure the similarity between i-vectors. Most 

metric learning approaches [11, 12] learn a Mahalanobis-like 
distance: d����, ��� = ��� − ���

�
	��� − ��� , where M  is a 

positive semi-definite (PSD) matrix satisfying the training 
constraints. Whether Mahalanobis distance can measure the 
similarity of the samples correctly or not depends significantly 
on the metric. A good metric relies on the simple geometric 
intuition that if all points in the same class could be mapped 
into a single location while those in other classes mapped to 
other location. 

Cao et al. proposed the subspace similarity metric learning 
algorithm (SUB-SML) [13], which formulate the objective 
function by incorporating the robustness to the large intra-
personal variations and the discriminative power of similarity 
metrics. In this paper, we will propose a new weighted 
pairwise constraints metric learning algorithm (WPCML), 
which adds a weight to the dissimilar pairs. The optimization 
problem is convex and our algorithm is completely specified 
by our objective function.  

In the NIST SRE development dataset, the speaker ids 
were provided by the organizers, but the metric learning 
algorithm need the matched pairs and unmatched pairs 
information. If all training segments form the matched pairs 
and unmatched pairs with each other by speaker ids, the size 
of sets is very big and is very hard to handle. So we will also 
propose a new way to select the unmatched pairs to train the 
metric, while it is selected by random in traditional fashion. 

This paper is organized as follows: Section 2 reviews the i-
vector speaker recognition system. Section 3 details the 
proposed WPCML algorithm. Section 4 studies the methods of 
forming the training pair sets. Section 5 describes the 
experiments and results. Section 6 concludes the paper. 

2. I-vector for Speaker Recognition 

2.1. I-vector extractor 
The most popular speaker model is the i-vector model [1], 
which is based on the Gaussian mixture model-universal 
background model (GMM-UBM) [14]. The speaker- and 
channel-dependent supervector can be expressed as: 

 m Tw� � �  (1) 

where m  is the UBM mean supervector, and T is a total 
variability space matrix containing speaker and channel 
variability. Speaker supervector  
  fits the normal distribution 
of  �(�, 

�) . The post distribution of hidden total factor �  
is Gaussian distribution, and the mean of it is the i-vector of 
the speaker utterance, which is a more low dimensional 
compacted vector meeting the standard normal distribution. 
Suppose we have a sequence of L frames {x�, x�, … , x�}and an 
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UBM  composed of K mixture components defined in some 
feature space of dimension D. The Baum-Welch statistics 
needed to estimate the i-vector for a given speech utterance u 
are obtained by: 
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Where 
�  is the kth mean of Gaussian distribution, and 
�(�|��, ����)   is the post possibility of kth Gaussian 
distribution for speaker feature vector ��. The i-vector of u is: 

     1 1 1( )11 Tw I T NT T F� � �� � � �  (4) 

where N  is defined as a diagonal matrix of dimension 
KD KD	   whose diagonal blocks are ( 1, , )kN I k K� , ), . F is 
a supervector of dimension KD  obtained by concatenating all 
statistics kF  for a given utterance u . �  is a diagonal 
covariance matrix of dimension KD KD	   estimated during 
factor analysis training and it models the residual variability 
not captured by the total variability matrix T . 

2.2. Session variability compensation 
After the i-vectors have been extracted, some session 
variability compensation techniques are used, such as Linear 
Discriminate Analysis (LDA), Within-Class Covariance 
Normalization (WCCN) and Length Normalization. 

It is supposed that S  is the total number of speakers, and 
sn  is number of i-vectors of speaker s, sw  is the mean of all 

the i-vectors of speaker s, and  w  represents the mean of all 
the i-vectors of all speakers. The target of LDA is to minimize 
intra-class distance and maximize between-class distance by 
projecting the data onto a subspace. The between-class 
variance bS   and within-class variance wS   are calculated as: 

 
1
( - )( - )

S
T

b s s
s

S w w w w
�

� �  (5) 

 , ,
1 1

1 ( - )( - )
snS

T
w s h s s h s

s hs

S w w w w
n� �

�� �  (6) 

The optimal subspace is comprised by the eigenvectors of 
��� = ����. 

WCCN maximizes the orthogonal direction of speaker-
dependent to make the speaker space as orthogonal as possible. 
The within-class covariance matrix is computed as follows: 

 , ,
s=1 =1

1 1= ( )( )
snS

T
s h s s h s

hs

W w w w w
S n
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After we get the matrix W , the i-vectors can be projected as: 
w Bw�w Bw . B  is obtained by Cholesky decomposition: 

1 TW BB� � .  
The length normalization of i-vector is follows:  

 /w w w� / ww w /  (8) 

2.3. Scoring 
In a trial, the i-vector speaker recognition system usually uses 
the cosine similarity scoring, PLDA  scoring or Mahalanobis 
metric scoring to measure the similarity between the target i-
vector argt etw   and the test i-vector testw . 

Cosine distance score can be computed as follows: 

 os arg arg/ ( )T
c t et test t et testscore w w w w�  (9) 

And the zt-normalization [15] was used for improving 
performance. 

Probabilistic linear discriminant analysis (PLDA) model 
defines a speaker- and channel-dependent i-vector as: 

 1 1 2 2r r rw w U x U x 
� � � �  (10) 

where for given speakers 1, ,r R� � � � ,  1U  is the eigenvoice 
matrix and 2U   is the eigenchannel matrix,  1x  and 2rx  are 
the speaker and channel factors and r
  is the residuals. For 
PLDA classification, scoring is conducted using the log-
likelihood ratio as follows: 

 arg 1

arg 0 0

( , | )
log( )

( | ) ( | )
t et test

PLDA
t et test

P w w H
score

P w H P w H
�  (11) 

where 1H   denotes that i-vectors arg( , )t et testw w  represent the 

same speaker and 0H   denotes that they do not. 

The Mahalanobis metric scoring function is [10]: 

 arg arg( ) ( )T
M t et test t et testscore w w M w w� � � �  (12) 

3. Weighted Pairwise Constraints Metric 
Learning 

Cao et al. [13] developed a regularization framework to learn 
similarity metrics for unconstrained face verification, which 
combine the cosine similarity and the Mahalanobis distance 
and proposed the SUB-SML algorithm. We proposed a new 
Mahalanobis metric scoring learned from weighted pairwise 
constraints(WPCML), which adds a weight to the dissimilar 
pairs.  

 In the following sections, the notations S and D denote the 
set of similar pairs (from the same speaker) and that of 
dissimilar pairs (from different speakers), and S D� � . 
Metric learning usually focuses on the Mahalanobis distance 
defined, for two i-vectors ( , )i jw w : 

 ( , ) ( ) ( )T
M i j i j i jd w w w w M w w� � �  (13) 

where M is a positive semi-definite matrix.  

3.1. Intra-speaker subspace projection 
Like the SUB-ML, to reduce the effect of large intra-personal 
variations, we map all i-vectors to the intra-speaker subspace. 
The intra-speaker covariance matrix is defined by: 

 
( , )

( )( )S i j i j
i j S

C w w w w



� � ��  (14) 
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where 1{ , , }k� �� � , }, , and 1( , , )kV v v� , ),  be the eigenvalues 
and eigenvectors of SC .The mapping of the i-vector to the 
intra-speaker subspace is defined by the whitening process: 

 1/ 2 1/ 2
1( , , ) T

kw diag V w� �� ��w diag( 1/ 2 V1/ 2, )1/ 2
k,  (15) 

3.2. Algorithm 

If i-vector iw  is similar to jw  (from the same speaker), define 
its associated binary output 1ijy �  and -1 otherwise. To better 
discriminate similar pairs from dissimilar pairs, we should 
learn M from the available data such that reports a large score 
for 1ijy �  and a small score otherwise. We derive the 
formulation of the empirical discrimination using the hinge 
loss: 

 
( , )

( ) (1 ( , ))emp ij M i j
i j P

M y d w w
 �



� ��  (16) 

For differentiating the importance of the similar pairs and 
dissimilar pairs, we applied a weight β to the dissimilar pairs: 
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Minimizing the above empirical error with respect to M 
will encourage the discrimination of similar pairs from 
dissimilar ones. Then the regularization term 2

F
M I�   is 

introduced to improve the generalization ability of loss 
function ( )emp M
 � . When the loss function is over fitted in the 
training process, the regularization term can modify the value 
of it. F

�  denotes the Frobenius normalization. Minimization 
of loss function ( )emp M
 �  can express as: 

 2min ( )
2emp FM

M M I�
 � � �  (18) 

The factor �  can be used to balance the effect of 
regularization term. Formulation (18) is identical to a standard 
convex optimization problem by introducing the slacking 
variables: 

 

2

( , )
min

2
. . [ ( , )] 1 , ( , ) .

[ ( , )] (1 ), ( , ) .

0

ij FM i j

ij M i j ij

ij M i j ij

ij

M I

s t y d w w i j S
y d w w i j D

��

�

� �

�




� �

�� � � 


�� � � 


�

� j

 (19) 

The dual formulation can be written as: 
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If the optimal solution is denoted by *� then the optimal 
solution *M is given by: 
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Formulation (20) is a standard quadratic programming 
problem, but we use the accelerated first-order algorithm 
proposed in [16] which is suitable for large-size datasets. 

4. Forming Training Sets 
The forming training sets used to learn a metric is a key issue 
in metric learning. An appropriate training pair containing 
proper information can instruct the training process correctly, 
while that with a great error will affect the training of the right 
metric. 

4.1. Traditional way 
As we can see in [17], similar pairs set is formed as follows. 
First, from the dataset, a speaker is chosen at random. Next, 
two i-vectors are drawn uniformly at random from among the 
i-vectors of the given speaker. If the two i-vectors are identical 
or if the i-vector pair of the specific speaker is already chosen 
previously as a similar pair, then the whole process is repeated. 
Otherwise the pair is added to the set of similar pairs. 

Dissimilar pairs are formed as follows. First, from the set 
of speaker in the set, two speakers are chosen uniformly at 
random. One i-vector is then chosen uniformly at random from 
the set of i-vectors for each speaker. If this particular i-vector 
pair is already chosen previously as a dissimilar pair, then the 
whole process is repeated. Otherwise the pair is added to the 
set of dissimilar pairs. 

4.2. Nearest distance pair sets for dissimilar pairs 
Traditional way to form training pair sets is simple and 
effective, but the i-vector pair sets are selected at random. We 
propose a new way to form the training set, which is based on 
the Euclidean distance between two i-vectors. 

For similar pairs, one speaker’s all i-vectors form the 
training set, and they form the similar pairs by each other. The 
dissimilar pairs can also be formed between the i-vectors 
belonging to the different speaker, but the set size is very big 
and infeasible for calculating in the model. So we select the 
nearest Euclidean distance pairs as the training set from all 
dissimilar pairs. This make the training model is feasible and 
can also improve performance. 

5. Experiments 

5.1. Results on NIST 2008 
Our experiments were run on the short2-short3 telephone core-
task in NIST SRE 2008 dataset firstly. NIST SRE 2004, SRE 
2005, and SRE 2006 telephone datasets were used for training 
two gender-dependent UBMs with 1024 Gaussian components, 
and estimating the total variability space. The dimension of the 
i-vectors in the total factor space is 400. 

The features were derived from the waveforms using 13 
mel-frequency cepstral coefficients on a 20 millisecond frame 
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every 10 milliseconds. Delta and delta-delta coefficients were 
computed making up a 39 dimensional feature vector. And the 
band limiting was performed by retaining only the filter bank 
outputs form the frequency range 300-3400 Hz. Mean removal, 
preemphasis and a hamming window were applied, and 
energy-based end pointing eliminated nonspeech frames.  

There are 6609 utterances from 491 male speakers and 
9136 utterances from 703 female speakers are used to form the 
training pair set in NIST SRE 04, 05, 06. Like the cosine 
similarity scoring, the LDA, WCCN and Length normalization 
are used for session compensation. There are five models 
tested: 

1.  Cosine+ZTNORM: This is the classical model in 
speaker recognition field, and the cosine similarity 
scoring with zt-norm is used. LDA, WCCN and Length 
normalization are used for session variability 
compensation after the i-vectors are extracted from 
utterances. 

2. PLDA: This is the most used model in the modern 
speaker recognition system. The PLDA classifier is used 
in the trial with the whitened i-vectors. 

3. SUB-ML: The SUB-ML algorithm is used to learn a 
Mahalanobis metric with the traditional way to form the 
training sets. 

4. SUB-ML-N: The SUB-ML algorithm is also used to 
learn a Mahalanobis metric, but the proposed nearest 
distance based way to form the training sets is used. 

5. WPCML-N: Finally, we use the proposed WPCML 
algorithm to learn a Mahalanobis metric, and the 
forming training sets way is based on the nearest 
distance. 

The results of the gender-dependent experiments are 
shown in the table 1 and table 2. For measuring the 
performance, we used equal error rate (EER) and the 
minimum decision cost function (minDCF), calculated using 
Cmiss=10, CFA=1 and Ptarget=0.01. 

Table 1. The results of cosine similarity scoring, 
PLDA and Mahalanobis metric scoring on the NIST 

2008 (male) 

Model EER(%) minDCF(08) 
Cosine+ZTNORM 4.74 0.027 

PLDA 4.28 0.024 
SUB-ML 4.68 0.023 

SUB-ML-N 4.47 0.023 
WPCML-N 4.16 0.020 

 

Table 2. The results of cosine similarity scoring, 
PLDA and Mahalanobis metric scoring on the NIST 

2008 (female) 

Model EER(%) minDCF(08) 
Cosine+ZTNORM 6.32 0.033 

PLDA 5.10 0.024 
SUB-ML 5.11 0.023 

SUB-ML-N 5.00 0.024 
WPCML-N 4.75 0.022 

 
We can see that the discriminative performance of 

Mahalanobis metric scoring with metric learned from SUB-

ML algorithm is better than the cosine similarity scoring. 
SUB-ML algorithm uses the constraint information of the 
pairwise i-vectors, so the learned metric can be more 
discriminative in the i-vector space, and make the 
Mahalanobis-based scoring be more predictive to the unknown 
utterances. When we select the dissimilar pairs according to 
the nearest distance, the performance of SUB-ML-N is better 
than SUB-ML’s. The results of WPCML-N model show that 
our method can improve the performance compared to the 
SUB-ML algorithm, and can get the better performance than 
the state-of-the-art PLDA model. 

5.2. Results on NIST 2014 i-vector challenge 
In the NIST 2014 i-vector challenge [18], the 600 dimensional 
ivectors were trained by previous years NIST SRE data and 
provided by the organizers. The development data containing 
36,572 speech files and 4,958 speakers were used to train the 
PLDA model. In the testing phase, there are 6,530 target i-
vectors from 1,306 speakers and 9,634 test i-vectors. The trials 
were randomly divided into two separate subsets, 40% in the 
progress set and 60% in the evaluation set. 

The performances of the proposed Mahalanobis metric 
scoring on the NIST 2014 i-vector machine learning challenge 
are shown in Table 3. The performance was evaluated the EER 
and normalized minDCF in [18]. The proposed WPCML-N 
model achieves 13.4% and 13.3% relative EER reduction 
against the PLDA baseline on the progress and evaluation 
subset respectively. 

Table 3. The results of PLDA and Mahalanobis metric 
scoring on the NIST 2014 challenge 

Model EER(%) norm minDCF(14) 
prog eval prog eval 

PLDA 3.13 2.78 0.301 0.287 
WPCML-N 2.71 2.41 0.270 0.262 

 

6. Conclusions 
This paper proposed the Mahalanobis metric scoring learned 
from the weighted pairwise constraints metric learning 
algorithm (WPCML) for speaker recognition, and the system 
performance can be improved. This paper also studied the way 
of forming training pair sets, and proposed a new way which is 
based on the Euclidean distance between the i-vectors. The 
performance of the speaker recognition system can be 
improved when using the selected similar pairs and dissimilar 
pairs. Compared to Cumani’s method, our model is more 

simple and can also get better performance than the PLDA. 
Metric learning algorithms usually have more complexity of 
time and space, so how to make the metric learning algorithm 
takes less time and space is a key issue in future. 
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