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Abstract
Speech source localization (SSL) using a microphone array
aims to estimate the direction-of-arrival (DOA) of the speech
source. However, its performance often degrades rapidly in re-
verberant environments. In this paper, a novel dual-microphone
SSL algorithm is proposed to address this problem. First, the
time-frequency regions dominated by direct sound are extract-
ed by tracking the envelopes of speech, reverberation and back-
ground noise. The time-difference-of-arrival (TDOA) is then
estimated by considering only these reliable regions. Second,
a bin-wise de-aliasing strategy is introduced to make better use
of the DOA information carried at high frequencies, where the
spatial resolution is higher and there is typically less corruption
by diffuse noise. Our experiments show that when compared
with other widely-used algorithms, the proposed algorithm pro-
duces more reliable performance in realistic reverberant envi-
ronments.

Index Terms: Microphone array, Speech source localization,
direction of arrival, reverberation.

1. Introduction
Speech source localization (SSL) aims to estimate the direction-
of-arrival (DOA) of a speech source. It is important for voice
capture [1] in many human-computer interaction applications,
such as human-robot interaction, camera steering and intelligent
monitoring.

Generally, the far-field assumption is applicable for a small-
scale microphone array, so that the DOA can be estimated from
the time difference of arrival (TDOA) or synchrony between
the received signals. In methods based on a steered-beamformer
[2], the peak output power is achieved once the signals are time-
aligned. In algorithms derived from high-resolution spectral
estimation [3], the spatial-spectral correlation matrix compen-
sates for the time-delay difference between the received signal-
s. TDOA can also be estimated based on inter-channel corre-
lation [4], independent component analysis [5], zero-crossings
[6], cross-power spectrum phase [7] and inter-channel phase d-
ifference (IPD) [8, 9].

Most SSL algorithms are reliable in free-field conditions, in
which the received signal contains only the direct wave of the
speech. However, in real application environments where room
reflections occur, the captured signal inevitably contains both
the direct sound and reverberation.

To achieve robustness in the presence of reverberation, the
usual approach is to extract or emphasise the direct sound. To

do so, some algorithms exploit the characteristics of the speech
signal, such as its statistical independence from other sources
[5], its harmonic structure [10], the excitation source of speech
production [11, 12] and so on. Others attempt to cancel or e-
liminate the effect of the acoustic transfer function between the
speaker and the microphones [2, 4, 8, 13, 14, 15] or utilize the
consistency and continuity of the DOA in the frequency domain
[16, 17] or time domain [18, 19].

High frequency parts of a signal are usually less corrupted
by reverberation, because on average they have a higher absorp-
tion ratio. For example, phase transform (PHAT) weighting,
which places equal importance on the phase of each frequency
bin, has proven to be helpful in reverberant environments. How-
ever, high-frequency signals often cause spatial aliasing, which
means that multiple wave cycles may be received at different
microphones, and it turns the single-valued mapping between
IPD and DOA into a multi-valued mapping.

Spatial aliasing can be avoided by discarding the high fre-
quency signal or reducing the microphone spacing [20], but
with consequent loss of localization resolution. Other meth-
ods utilize the redundancy contained in the received signal. For
example, information from other frequency bands or time inter-
vals [21, 22, 23] are reliable references or constraints. However,
in applications with small microphone array scale, most refer-
ences and constraints become inapplicable or unreliable.

In this paper, a dual-microphone based SSL algorithm is
proposed to deal with reverberation for single speech scenari-
o. The TDOA is estimated from time-frequency components
which are dominated by the direct sound, and it is realized by an
envelope tracking strategy for speech, reverberation and back-
ground noise. Then, a bin-wise de-aliasing method is proposed
to remove the spatial aliasing, thus allowing high frequency
bands to make a good contribution to the TDOA estimation.

2. Analysis of the problem
Consider an ideal anechoic environment containing a far-field
speech source with spectrum S(ω). The received signal at

microphone m (m = 1, 2) has the spectrum X(m)(ω) =
S(ω)e−jωτm , where τm is the time of propagation. Thus T-
DOA can be estimated correctly from the inter-channel phase
difference, and the DOA is derived from sin θ = cδ

d
, where

δ = τ1 − τ2 is the TDOA, θ is the DOA, c is the speed of
sound, and d is the inter-microphone distance.

In real environments, where reverberation and attenuation
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cannot be neglected, the received signal becomes

X(ω) = a(ω)S(ω)e−jωτ +R(ω) +D(ω) (1)

where a(ω) is the frequency-related attenuation, R(ω) is ear-
ly reverberation, D(ω) is late reverberation, and the micro-
phone index m is omitted. If we represent the reverberation as
R(ω) +D(ω) = N(ω)ejΦN (ω), then the phase of X(ω) is de-
termined by ωτ only if |a(ω)S(ω)| >> |N(ω)|, which means
that the estimated TDOA is close to its true value only if the
time-frequency point is dominated by the direct sound. There-
fore, the TDOA estimation is affected by the reverberation time
T60, which is the time required for reflections of a direct sound
to decay 60 dB.

To illustrate the effect of reverberation, we calculate δ for
each frequency bin and time frame to estimate the normalized
histogram count of δ, which is depicted as P (δ). Fig. 1 shows
P (δ) for speech and non-speech segments in environments with
T60 = 300 ms and T60 = 600 ms respectively. The signal is 15
seconds long, containing 3 sentences and 4 intervals, and the
DOA is θ0 = 60◦. The distance between the two microphones
is 0.085 m, so the true TDOA is δ0 = 0.085 · sin 60◦/c ≈
2.17× 10−4s. The sample rate is 16 kHz, and we use the Hann
window, short-term Fourier transform (STFT) of 512 points and
frame shift of 160 points. δ is estimated in frequency between
300 and 2000 Hz to avoid spatial aliasing.
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Figure 1: Histograms of the TDOA estimated from speech seg-
ments, intervals (noise) and selected time-frequency points in
two reverberant environments. The reference TDOA τ0 =
0.217ms is shown as vertical dotted lines.

As is shown in Fig. 1, P (δ) is highly affected by reverber-
ation in speech segments, whereas it is relatively unaffected in
noise segments. Higher reverberation reduces the differentia-
tion between speech and noise, and cause higher bias and vari-
ance in TDOA estimation. Moreover, due to the mapping of
sin θ = cδ

d
, higher bias or variance of δ will bring more serious

bias for θ estimation.
Therefore, only reliable parts of received signal should be

extracted for TDOA estimation. This is realized in two ways
in this paper. First, the direct wave component is extracted by
envelope tracking, which exploits the fact that direct sound ar-
rives earlier than reflections, so S(ω) can dominate X(ω) on
its rising edges, while the proportion of R(ω) and D(ω) usual-
ly increase later. Second, a sound wave with higher frequency
usually decays faster than one with a lower frequency, thus it is
more likely to be dominated by S(ω). To allow the use of high-
frequency bands, an approach for eliminating spatial aliasing by
appropriate selection of TDOA candidates is presented.

3. Algorithm description
The proposed algorithm can be summarised as follows. First,
the time-frequency (T-F) points that carry the TDOA informa-

tion are extracted. This is realized by the envelope tracking of
the speech, early reverberation and background in their ampli-
tude of cross-power spectrum. Secondly, a reliable TDOA es-
timator for high-frequency bands is described, and a bin-wise
de-aliasing strategy is utilized to delete the aliased TDOA esti-
mators. Finally, the DOA is estimated based on the distribution
of the reliable TDOA estimators.

3.1. Envelope tracking

The signals received in two channels are transformed into the
frequency domain via STFT, and depicted as Xm,l(k), where
m (m = 1, 2) is the channel index, l is the frame index, and k is
the frequency bin. Then the amplitude of cross-power spectrum
is calculated as Cl(k) = |X1,l(k)X

∗
2,l(k)| and logarithmically

compressed to El(k) = log10Cl(k).
The envelopes are tracked in each frequency bin. Here we

omit the index k, and denote El(k) as El. Three envelopes are
tracked based on El: direct speech Sl, early reverberation Rl,
and ground noiseGl. Here the ground noise is the summation of
all short-time stationary noises, including diffuse noise, circuit
noise and the stationary noise from the environment.

Sl is actually the excitation of the whole system, so Sl is
the major component in the rising edge of El, and it is updated
according to equation (2). λS adjusts the decay time of the
speech envelope, which is set as 0.1 s based on the typical length
of syllables and the speech gaps. If the frame shift is x second,
then λS = x/0.1.

if El ≥ Sl−1, Sl ← El

else Sl ← λSEl + (1− λS)Sl−1 (2)

Rl increases after Sl because of the delay in multi-path
propagation, and it decreases more slowly. Rl is updated ac-
cording to (3), where μR is to describe the delay of the re-
flections, and λR adjusts the decay time of reverberation. For
the rising time of 0.02 s and decay time of 0.5 s, we set μR =
x/0.02 and λR = x/0.5.

if El ≥ Rl−1, Rl ← μREl + (1− μR)Rl−1,

else Rl ← λREl + (1− λR)Rl−1 (3)

Gl increases slowly and decreases fast to catch the gaps
between speech segments. Gl updates according to (4), where
μG and λG are parameters that adjust the rise and decay times.
Typically we set the rise time as 1 s and decay time as 0.1 s.

if El ≥ Gl−1, Gl ← μGEl + (1− μG)Gl−1

else Gl ← λGEl + (1− λG)Gl−1 (4)

All the T-F points with Sl < Rl or Sl < Gl + η are elimi-
nated, where η is a frequency-related threshold. The higher the
frequency, the lower η becomes, because the energy of clean
speech attenuates by 6 dB/octave.

The purpose of envelope tracking is to delete the trailing
parts of speech. It can be regarded as a sieve to extract the time-
varying components while ignoring the prolonged or stationary
components. Therefore, Sl rises instantaneously in the rising
edge to to extract direct speech, while the trailing part is con-
trolled by the decay time of the three components. The final
performance of the SSL algorithm is not very sensitive to the
parameters chosen, especially those relating to the updating of
Rl and Gl.

Fig. 2 is an example of envelope tracking, in which the
speech is recorded in a room with size 6m × 5m × 3m and
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Figure 2: Illustration of envelope tracking.

T60 ≈ 600 ms. The speaker is 3 m away from the microphones,
and d = 0.085m. The data is sampled at 16 kHz and analyzed
with a frame shift of 0.01 s and STFT size of 512 points. The
top right panel is the amplitude of cross-power spectrum of the
received signal, in which the effect of diffuse noise is partly e-
liminated, especially at high frequencies. The bottom left panel
shows the extracted region, where the T-F points dominated by
direct sound are selected while most of the others are deleted.
The bottom right panel displays the detail of envelope tracking
for the frequency bin centered at 3000 Hz.

The effect of envelope tracking is also shown in Fig. 1 to
compare the histogram of estimated δ in the extracted T-F parts
and the ground truth (hand-labeled) speech segments. On the
selected T-F parts, the peaks of the histograms are closer to the
true value, and the peaks are higher and narrower. This means
that the δ derived from the selected T-F points is closer to the
true value, and this effect is more evident in the T60 = 600 ms
environment. However, the peaks are still biased towards 0 in
both environments, especially in the environment with a longer
reverberation time. This is because most of the T-F points dom-
inated by speech are still a little contaminated by the reverbera-
tion, which introduces a bias towards 0◦. Therefore, the perfor-
mance of SSL will not be reliable if it only relies on the infor-
mation in the low frequency band.

3.2. TDOA de-aliasing

TDOA can be estimated for each T-F point based on IPD. De-
note the phase of a T-F point on channel 1 and 2 as Φ1 and Φ2,
where the frame and frequency index are omitted, then IPD is
calculated as ψ = Φ1 −Φ2. So TDOA δ = ψ+2nπ

2πf
, where f is

the frequency and n is an integer that satisfies

−d
c
<
ψ + 2nπ

2πf
<
d

c
(5)

If f > c
2d

, there may exist several values of n because of phase
wrapping, but only one is correct. Therefore, TDOA de-aliasing
is required in order to identify the correct n for δ = ψ+2nπ

2πf
.

According to (5), the distance between the two candidate

δs is
ψ+2(n+1)π

2πf
− ψ+2nπ

2πf
= 1/f . This can be explained in

two ways. First, if the possible δ range is limited to 1/f , then
the aliasing problem is avoided because only one n is possible.
Second, the signal at frequency f has the best ability to differ-
entiate δ in range with width 1/f , because δ is just mapped to
ψ of its full possible range (0, 2π).

Therefore, lower frequencies are less affected by aliasing,
but are not precise enough for TDOA estimation. On the oth-
er hand, higher frequency bands have better local precision, but
the aliasing may be serious. To get good TDOA precision while
keeping IPD un-aliased, a bin-wise de-aliasing algorithm is pro-
posed here.

Assuming there is a single speech source, for a buffer with
L frames, a TDOA distribution histogram hk(δ) is first esti-
mated based on all the selected reliable T-F points in the non-
aliased frequency band, where k is the highest frequency bin of
this band. Representing the frequency of bin k as fk, then the
range of δ in hk(δ) can be denoted as (δk, δk + 1

fk
). For the

non-aliased frequency band, δk = − d
c

, and 1
fk

is equal to or a

little higher than 2d
c

, according to the specific parameters.
In the higher bin (k + 1), the widest non-aliased range of

δ is (δk+1, δk+1 + 1
fk+1

), where the start point δk+1 should

be determined to eliminate the range with ambiguity. The de-
aliasing process in bin (k + 1) is deployed by searching the
starting point in range of [δk, δk + 1

fk
− 1

fk+1
) based on the

histogram hk(δ), and the standard for the the chosen range is to
have the highest summation of hk(τ), as is shown in (6).

δk+1 = argmax
ξ

∫ ξ+ 1
fk+1

ξ

hk(δ)dδ (6)

For the L frames in the buffer, all the values of δ estimated
from bin (k+1) are wrapped to the range (δk+1, δk+1+

1
fk+1

),

by which the only one proper n is determined. Then the TDOA
histogram is updated as hk+1(τ) by introducing the T-F points
on bin (k + 1). In the same way, the spatial aliasing for bin
(k + 2) and higher frequency bands can also be eliminated,
causing the TDOA histogram to become narrower and clearer.

The main idea in this de-aliasing strategy is to get a raw
histogram of δ based on the un-aliased frequency band, which
is utilized as the a priori distribution for the possible values
of n in higher frequency bins. The de-aliased candidate of n is
selected as the one with highest possibility, and a new histogram
with a narrower range is formed by merging the new samples.
Due to the bin-wise process, merging is reliable as long as the
number of T-F points in the buffer is high enough.
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Figure 3: Illustration of the effect of TDOA de-aliasing.

Fig. 3 is an example of TDOA de-aliasing in a buffer of
speech, where d = 0.085 m, the sample rate is 16 kHz, STFT
size is 512, and L = 25. The TDOA is converted to DOA to
show the effect more clearly. The non-aliased frequency band is
0-2 kHz, so the histogram of δ based on 300-2000 Hz is first cal-
culated. The non-aliased histogram is low and flat, but the curve
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becomes higher and clearer when progressively higher frequen-
cy bands are included. Finally, the DOA can be estimated as the
one corresponding to the peak of the histogram.

4. Experiment and Analysis
4.1. Experimental setup

The performance of the SSL algorithm was tested on a corpus
of signals recorded in a 6 m × 5 m × 3 m varechoic cham-
ber. The T60 of the room could vary from 300 ms to 700 ms by
adding or removing the sound absorbing panels on the wall-
s. The speech data consisted of 64 clean Chinese sentences
read by two men and two women, and the endpoints of speech
were all hand-labeled. The speech was played by a loudspeak-
er 3 m away from the microphones with DOAs of 0◦, 30◦, 45◦

and 60◦, respectively. Two omni-directional microphones with
d = 0.085m were used to record the signals.

The received signals were sampled at 16 kHz, then Hann
window weighted before applying a STFT of 512 points, with
a frame shift of 0.01s. The frequency band below 300 Hz was
discarded to avoid low-frequency interference. Then based on
the frame shift, parameters of the proposed algorithms were set
as below: λS = 0.1, μR = 0.5, μG = 0.01, λG = 0.125, and
L = 20. Two values of λR were tested: 0.0333 and 0.0167,
corresponding to the decay time of 300 ms and 600 ms.

4.2. Results and comparison

The proposed algorithm is compared with GCC, GCC-PHAT
[4], SRP and SRP-PHAT [2] in terms of root-mean-square
(RMS) error, as is shown in Table 1, where the rows Pro-
posed1 and Proposed2 correspond to the proposed algorithm
with λR=0.0333 and 0.0167 respectively.

Due to the frame-based processing in GCC and SRP, only
the frames hand-labeled as speech are utilized in the RMS cal-
culation. Moreover, a 7-frame post-processing is used to refine
the localization result for each frame (i.e., the result of frame
M is defined as the best result of frames M − 3 to M + 3).

As is shown in Table 1, all the algorithms have low bias
when θ = 0◦, regardless of the level of reverberation. Howev-
er, the performance degrades when θ or reverberation becomes
higher. The performance of GCC is affected by reverberation
most seriously, followed by SRP, and the bias becomes higher
when the DOA is higher. For both GCC and SRP, PHAT helps
to reduce the bias in reverberant environments. The proposed
algorithm shows the lowest bias when the DOA is not 0◦, and
the bias increases slowly with DOA and reverberation level.

4.3. Analysis of parameter values

The parameters in the proposed algorithm are set based on the
property of speech signal and the propagation properties of
sound waves, hence the performance of the algorithm should
not be sensitive to the environment, so long as the parameters
are within a reasonable range.

λR determines the decay time of the reverberation enve-
lope, which can be set in the range of 200 ms to 1000 ms. As
shown in Table 1, the change of reverberation envelope decay
time from 300 ms to 600 ms only causes a small difference in
the RMS error. Actually, a decay time close to the environment
T60 will help to extract reliable T-F points in the trailing part of
speech, but the final result is mainly determined by the rising
edge because of the rapid decrease of the speech envelope.

The effect of different de-aliasing buffer length L was also

Table 1: RMS error (in degrees) of the algorithms. Proposed1
and Proposed2 correspond to the proposed algorithm with re-
verberation envelope decay time of 300 ms and 600 ms.

T60 Algorithm
DOA (◦)

0 30 45 60

300ms

GCC 3.07 16.40 23.81 40.11

GCC-PHAT 2.25 7.17 10.93 16.40

SRP 3.04 8.89 14.57 18.83

SRP-PHAT 2.46 7.02 11.59 15.14

Proposed1 2.00 4.66 6.27 6.11
Proposed2 2.11 4.79 6.99 6.13

600ms

GCC 3.19 14.81 22.64 33.55

GCC-PHAT 3.14 9.05 13.11 20.60

SRP 2.28 11.22 21.91 30.81

SRP-PHAT 2.84 8.67 16.41 23.86

Proposed1 1.73 7.34 11.52 13.39
Proposed2 1.94 7.37 11.29 13.39

tested. A longer buffer length is helpful for the final accuracy
if θ remains stationary, because more reliable T-F points in low
frequency bands will be involved to form the raw histogram of
δ. However, if the buffer is too long, the algorithm will fail
to estimate the instantaneous DOA of the speaker. Therefore,
an appropriate buffer length should be selected according to the
specific application to balance the accuracy and the tracking ve-
locity, and the recommended range is between 200 and 300 ms.

5. Conclusions
A low-biased dual-microphone speech source localization algo-
rithm is proposed in this paper. The T-F parts dominated by
direct sound are extracted by an envelope tracking strategy mo-
tivated by the property of sound wave propagation. Then the
aliased high frequency signal is fully utilized for TDOA estima-
tion through a bin-wise de-aliasing process. Experiments show
that the proposed algorithm has reliable performance in rever-
berant environments. Moreover, the algorithm is applicable to
track a moving speech source if the buffer length is set to an
appropriate value.

There are still some limitations of this algorithm. First, the
de-aliasing process is based on the assumption that there ex-
ists only one speech source, and this condition is not always
applicable in real applications. Second, the envelope tracking
process is deployed in each frequency bin, and the correlation
between different frequency bins could be further exploited.

In both respects, a strategy that groups correlated frequency
bins will be helpful. Instead of the separate envelope tracking
in each frequency bin, a contour tracking that involves several
correlated frequency bins will be more practical in multi-source
conditions to extract the direct sound, thus allowing the spatial
de-aliasing strategy to be generalized to deal with multi-source
conditions. This will be addressed in our future research.
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