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Abstract
In this paper we present a novel approach of automatic detection
of phonatory and articulatory impairments caused by Parkin-
son’s disease (PD). Modulated (varying between low and high
pitch) and sustained vowels are considered and analysed. The
fundamental frequency of the phonations and its range are com-
puted using the Hilbert-Huang transformation. Additionally, a
set with “standard” measures are calculated to model phonatory
and articulatory deficits exhibited by Parkinson’s patients. Ker-
nel Principal Component Analysis was also applied in order to
reduce the dimensionality of the representation space. The au-
tomatic discrimination between speakers with PD and healthy
controls (HC) is performed using decision trees. According to
the results, modulated vowels are suitable to evaluate phonatory
and articulatory deficits observed in PD speech.
Index Terms: Parkinson’s disease, pitch modulation, decision
trees, kernel Principal Component analysis, phonatory, articula-
tory.

1. Introduction
Parkinson’s disease (PD) is the second most prevalent neurode-
generative disorder in the world affecting about 2% of people
older than 65 years [1]. Patients with PD develop several mo-
tor impairments such as bradykinesia, rigidity, postural insta-
bility, and resting tremor. Non-motor deficits developed by PD
patients include sleep disorders and problems with cognition
and emotion [2]. The majority of PD patients develop several
speech impairments with symptoms including monoloudness,
breathy, hoarse and rough voice, inappropriate pauses, misartic-
ulation, and trembling voice [3]. Different studies have reported
instability in the phonation of PD speakers and articulatory
deficits that affect the speech production and its intelligibility
[4, 5, 6]. Phonatory and articulatory deficits can be studied with
sustained phonations or continuous speech signals. Most of the
studies about Parkinson’s speech consider sustained phonations
because this speech task is easy to be reproduced by elderly
patients and because it provides information about the phona-
tory (vibration of the vocal folds) and articulatory (resonances
in the vocal tract) processes of speech production. The abnor-
malities in phonation of PD patients have been widely studied
considering the fundamental frequency, its variability, and also
nonlinear dynamics techniques have been introduced to model
such impairments [7]. Regarding the analysis of articulatory
abnormalities, they have been also studied mainly considering
sustained phonations of the vowels /a/, /i/, and /u/. In [8] and [9]

the authors introduce the Formant Centralization Ratio (FCR) as
a new measure to assess the articulatory capability of PD speak-

ers. FCR is defined as FCR = F1/i/+F1/u/+F2/u/+F2/a/
F2/i/+F1/a/

,

where F 1/a/, F 1/i/, and F 1/u/ are the frequency of the first
formant of the vowels /a/, /i/, and /u/. Similarly, F 2/a/, F 2/i/,
and F 2/u/ are the frequency of the second formant of the vow-
els /a/, /i/, and /u/, respectively. According to the results, FCR is
suitable to robustly differentiate dysarthric from healthy speech.
In [10] the triangular Vowel Space Area (tVSA) is evaluated to
assess articulation in PD speakers. tVSA is defined as the area
of the triangle that is formed when the first two formants ex-
tracted from the corner vowels /a/, /i/, and /u/ are plotted in
the (F1, F2) plane. In paper [11] the authors present phona-
tion, articulation and prosody analyse based on: sustained vow-
els, vowels uttered with changing the tone of each vowel from
low to high, different words, phonemes, and different speech
tasks. The authors used PC-GITA database, the same as was
used in following paper. The highest classification accuracy to
detect Parkinson’s disease was 91,3% obtained with the vowel
/a/ modelled with periodicity and stability measures. Recently,
in [6] the authors present a study where classical and nonlin-
ear dynamic features are applied to analyze Parkinson’s speech.
The highest classification accuracy being at the level of 91%
was achieved for vowel /a/ using stability and periodicity fea-
tures. According to the results, phonatory-based features are
more suitable to study problems in PD speech when sustained
vowels are analyzed; however, note that studies with modulated
vowels, i.e., sustained vowels uttered changing their tone from
low to high, have not been addressed to detect PD so far. The
study of this kind of speech tasks is relevant because they can
reflect difficulties to modulate the tone of the phonation and
also show deficits in moving the tongue to the correct position
to produce modulated vowels.

In this paper we consider recordings of the Spanish vowel
/a/ uttered in a sustained manner and with modulated pitch.
The voice signals are modeled with several features to de-
scribe phonatory and articulatory phenomena which are im-
paired in Parkinson’s speech. Kernel Principal Component
Analysis (kPCA) is used to eliminate redundant information
and to remove correlation among features. The automatic dis-
crimination of PD and HC speakers is performed with decision
trees. The results show that articulatory-based features com-
plement the information provided by the phonatory-based mea-
sures, which improves the classification accuracy. The rest of
the paper is as follows: section 2 include the voice database
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description, section 3 showcases the methodologies used in the
examination including phonatory modeling, articulatory mod-
eling, feature space transformation and classification. Section 4
presents obtained results. Section 5 contains the conclusion of
all the work featured in this paper.

2. Voice Database
Recordings of the PC-GITA database [11] are considered. A
total of 100 speakers (50 with PD and 50 HC) are included. All
the participants are Colombian Spanish native speakers. The
age of the men with PD ranges from 33 to 77 years old (mean
62.2 ± 11.2), the age of the women with PD ranges from 44
to 75 years old (mean 60.1 ± 7.8). For the case of healthy
speakers, the age of the men ranges from 31 to 86 (mean 61.2±
11.3) and the age of the women ranges from 43 to 76 years old
(mean 60.7 ± 7.7). The sampling frequency of the recordings
was 44.1 kHz with 16-bit resolution. The speakers were asked
to produce two different speech tasks, (1) sustained phonations
of the vowel /a/ at a constant tone, and (2) sustained vowels
with a modulated tone, i.e., varying from low to high. All of
the patients were recorded in ON-state, i.e., no more than three
hours after their morning medication. The neurological state of
the patients was assessed by a neurologist expert according to
the MDS-UPDRS-III (mean 38.5 ± 19.1) scale [12].

3. Methodology
3.1. Phonatory modeling

Several measures typically used for modeling phonatory and ar-
ticulatory deficits are used. The phonatory model includes mean
value, standard deviation, kurtosis, and skewness of the funda-
mental frequency (F0) and the difference between its maximum
and minimum per phonation. The mean values of jitter, shim-
mer, the curvature of the pitch-contour, 10 mel-frequency cep-
stral coefficients (MFCCs), and energy contour are also con-
sidered. Further details of the algorithms applied to compute
these features can be found in [13, 14]. Additionally, the instan-
taneous energy and its range are computed using the Hilbert-
Huang transformation (HHT) [15]. The HHT is an extension of
Empirical Mode Decomposition (EMD) algorithm by applying
the Hilbert transform. It allows the determination of instanta-
neous frequencies and amplitude components of a decomposed
signal. The use of Hilbert spectral analysis facilitates the isola-
tion of signal’s subsequent components to determine which of
them are more prominent and “dominate” the frequency of the
signal. In the HHT procedure no assumption about the station-
arity of the signal is made, thus this transformation can provide
a higher resolution than short-time Fourier transform (STFT)
for analyses in the time-frequency domain. Figure 1 shows
the difference between the spectrogram obtained with the HHT
transform (part A of the figure) and with the STFT transform
(part B of the figure). Note that HHT provides more detailed
information of the signal in the low frequency bands (between
100 Hz and 300 Hz).

The HHT transformation was introduced in [15]. The au-
thors present an adaptive technique to represent signals as a sum
of simpler components in the time domain. Such components
are obtained by using the EMD which allows their separation
in time and frequency. The first step of the HHT computation
consists of a low-pass filtering with a sharp cut-off frequency of
800 Hz in order to shorten the frequency-band to those values
where pitch values exist [16] . Then a set of decomposed func-
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Figure 1: Spectrograms of a modulated vowel /a/. Part (A) cor-
responds to the HHT and part (B) corresponds to the STFT.
Patient information: female, 55 years old, MDS-UPDRS-III 43,
and recorded after 12 years of PD diagnosis.

tions which are called intrinsic mode functions (IMF) is formed.
To calculate IMF the following conditions must be fulfilled: the
number of extrema and the number of zero-crossing must be
equal or differ at most by one and an average value of the enve-
lope interpolating local maxima and the envelope interpolating
local minima is equal to zero. To obtain the IMF functions the
procedure known as sifting is implemented as follows. Firstly
all the extrema (local maxima and minima) of the signal x(t)
are identified. Secondly, the mean value m(t), the upper- and
lower-envelopes of the signals x(t) are obtained. Thirdly the
difference d(t) = x(t) −m(t) is calculated to extract the de-
tailed signal. In fact, d(t) rarely satisfies the two conditions
mentioned before for the IMF functions. Therefore, the sifting
procedure must be repeated several times, with the “difference”
d(t) taking the place of x(t). To calculate the next IMF, the en-
tire process is applied to the residual signal r1(t) = x(t)−d(t).
The residual is iterated until two conditions are satisfied: (1) the
number of extrema in the residual is smaller than 2 and (2) the
maximum number of iterations is reached. The role of EMD is
to decompose an arbitrary and time-varying signal into intrinsic
mode functions that are modulated in amplitude and frequency.
The IMFs represent actual fluctuations of the signal (including
both variables: amplitude and frequency as functions of time).
The sum of IMFs gives the original signal. The Hilbert trans-
formation is applied upon the IMFs and the instantaneous fre-
quencies and amplitudes are found. Figure 2 shows the wave-
forms of acoustic signals and their first 4 IMFs (Part (A) indi-
cates a healthy woman and part (B) a woman suffering from
PD). Note that the IMF3 and IMF4 signals are different for the
healthy and pathological speaker, i.e., the signals obtained from
the patient are more choppy than those exhibited by the healthy
speaker. This behavior indicates more complexity in the dy-
namical structure of Parkinson’s voice, which was previously
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Figure 2: Pitch changes of acoustic signal and first 4 IMFs for
A) healthy woman 63 years old, B) woman with Parkinson Dis-
ease 57 years old, 41 UPDRS, 3 H&Y, 37 years after diagnosis

observed in [17] as an index of phonatory instability and voice
tremor of PD speakers.

The instantaneous frequency of a signal can be obtained
from analytic function defined as zi(t) = ci(t) + jdi(t) =

ai(t)e
jδi(t), where ai(t) indicates the instantaneous amplitude,

and δi(t) represents the instantaneous phase of the IMF ci(t).
The instantaneous frequency ωi(t) of ci(t) is calculated as
ωi(t) = dδi(t)/dt, thus the acoustic signal x(t) can be rep-
resented as:

x(t) = R

{
n∑

i=1

ai(t)e
jωi(t)

}
(1)

where R {·} indicates the real part of the argument. In-
stantaneous frequencies outside the range between 60 Hz and
500 Hz are set to zero. Similarly, values with variation greater
than 100 Hz within 5 ms are also set to zero [18]. The IMF with
the largest amplitude is chosen for the computation of the in-
stantaneous frequency. The difference between the maximum
and the minimum values of the IMFs amplitude is also com-
puted.

3.2. Articulatory modeling

Regarding the articulatory modeling we computed the mean
values of the first two formants (F1 and F2) which provide infor-
mation about possible instabilities or abnormalities in the shape
of the vocal tract and also about the vertical and horizontal posi-
tion of the tongue [19, 20]. As during the production of speech
Parkinson’s patients exhibit articulatory movements restricted
in range and energy due to hypokinetic dysarthria, we hypothe-
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Figure 3: A) Waveform of ’a’ vowel signal, healthy woman
(HC), age 61, B) pitch modulation HC, C) first two formant’s
frequencies representation, HC, D) waveform of ’a’ vowel
signal, woman with Parkinson’s disease (PD), age 60, UP-
DRS=29, H&Y=2, 7 years after diagnosis, E) pitch modulation
PD, F) first two formant’s frequencies representation, PD

size that such abnormalities can be observed more clearly dur-
ing the production of modulated vowels, thus the frequency for-
mants could provide information regarding instabilities and ab-
normal positions of the vocal tract during such phonations.

Figure 3 shows different waveforms obtained from one
healthy speaker (left side: figures A, B, and C) and one PD
speaker (right side: figures D, E, and F). Parts A and D indi-
cate the acoustic signal of the modulated vowel, parts B and
E show the pitch-contour, and parts C and F show the contour
of the first two formants. From the plots of the pitch-contour
we can observe that it was difficult for PD patients to perform
the modulation of the vowel. Additionally, the instability in the
movement of the tongue while producing modulated vowels can
be observed in the contours of the first two formants. Note that
there is a couple of hops or discontinuities specially in the first
formant obtained from the PD patient (part F).

3.3. Feature space transformation and classification

Kernel Principal Component Analysis (KPCA) is used here
to reduce the dimensionality of the feature space without any
assumption regarding possible linear relationships among the
computed features [21, 22]. A Gaussian kernel is used here and
its parameter σ is optimized such that it should be smaller than
inter-class distances and larger than inner-class distances, thus
it is calculated as follows [22]:

σ = ξ ×mean(lNN
i ) (2)

where ξ was optimized during the training process to achieve
the best data separation, lNN

i is the distance from analyzed data
point to its nearest neighbor. The computations were done for
female and male recordings separately, thus we obtained differ-
ent σ values on each case.

A decision tree was used to perform the automatic discrim-
ination between PD and HC speakers. Decision trees are used
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Table 1: Results with phonatory features
sustained vowel

original vector kPCA

female male female male
Accuracy 72±4% 76±5% 90±4% 80±6%

# of features 23 23 17 14

modulated vowel
Accuracy 64±4% 78±5% 76±4% 82±4%

# of features 23 23 15 11

Table 2: Results with articulatory features (F1 and F2)
sustained vowel

original vector kPCA

female male female male
Accuracy 57±4% 60±3% 58±4% 60±6%

modulated vowel
Accuracy 60±4% 64±4% 64±2% 64±6%

to predict that each observation belongs to the most commonly
occurring class of training observations in the region it belongs
to [23]. The result of classification with decision trees is binary,
i.e., 0 for healthy and 1 for PD. A 10-fold cross-validation (CV)
strategy is followed for the training process, i.e., the data is split
into 10 folds randomly chosen, 9 of them are used for train and
1 is for test. The procedure is repeated 10 times. Each subject
is in a different test fold, and the same subject never is in both
test and train groups. It then examines the predictive accuracy
of each new tree on the data not included in training that tree.
Therefore, validation set is used to avoid overfitting.

The optimal tree size is chosen by selecting the smallest
error rate obtained in the test set.

4. Experiments and results
Phonatory and articulatory analyses are performed upon sus-
tained and modulated vowels. Sustained vowels are included
for the sake of comparisons with respect to the modulated vow-
els. The results of the 2-class problem of detecting whether the
patient is suffering from PD or not are summarized in Tables 1,
2, and 3. Table 1 includes only results obtained with phonatory
features, Table 2 indicates the results obtained with only artic-
ulatory features, i.e., F1 and F2. Table 3 shows the results ob-
tained when phonatory and articulatory features are combined.

The results in Tables 1 and 2 indicate that at least with the
feature sets considered here, the phonatory modeling is more
suitable to assess sustained and modulated vowels than the ar-
ticulatory modeling. However, Table 3 shows that when consid-
ering recordings of the male speakers and the kPCA procedure,
the results can improve. This result indicates that, to some ex-
tent, the phonatory and articulatory features are complementary
and it is worth to consider the combination of these two feature
sets.

5. Conclusions
In this paper we have analyzed recordings of 50 PD patients
and 50 healthy control speakers. The participants performed
the sustained phonation of the Spanish vowel /a/ with a con-
stant tone and also with a modulated tone, i.e., varying from low
to high. Phonatory and articulatory features are extracted from
the recording. Phonatory modeling includes several measures

Table 3: Results with articulatory and phonatory features
sustained vowel

original vector kPCA

female male female male
Accuracy 72±4% 76±4% 90±4% 82±4%

# of features 25 25 12 24

modulated vowel
Accuracy 68±3% 78±4% 76±4% 84±5%

# of features 25 25 17 25

such as jitter, shimmer, F0, energy, and MFCCs. Additionally,
the instantaneous frequency and its range are estimated with the
HHT transformation. Regarding the articulatory measures, the
first two formants are computed in order to model deficits of
PD patients to move and hold the tongue and jaw in their cor-
rect position while pronouncing sustained and modulated vow-
els. Two versions of the feature sets are considered: one with
all of the computed features and another one with the result of
applying the kPCA transformation. The automatic discrimina-
tion of PD people and HC speakers is performed with a decision
tree. The results obtained with the phonatory features are bet-
ter than those obtained with the articulatory features. This result
indicates that phonatory modeling is more suitable to assess sus-
tained phonations of the vowel /a/ with constant and modulated
pitch. The results obtained with the articulatory features show
that the considered feature set (only with the first two formants)
is not suitable to model articulatory impairments in PD speech.
The best classification results obtained with male and female
considering sustained vowels are 82% and 90%, respectively.
Regarding the results with the modulated vowels, an accuracy
of 76% was obtained in female and 84% in male.

This is a preliminary study that considers a new speech task
(with modulated vowels) to assess phonatory and articulatory
features in the speech of PD patients. The modulated vowels
enable an extension of the standard approach of the acoustic
analysis, adding articulatory and phonatory information against
differences in age and gender. Further research is required to
include more features in order to take more advantage of the
proposed speech task, which could be useful to evaluate prob-
lems of PD patients to keep their tongue and jaw in the correct
position while producing sustained and modulated phonations.
Other papers ([6] and [11]) show that adding non linear fea-
tures and other measurements such as shimmer and harmonics-
to-noise ratio might increase the classification accuracy. Also
exceeding the analysis to word, sentences, text and monologue
might bring useful information to the classification process. For
the future work we will extract more features from the HHT
transformation, i.e., from the IMFs decompositions. According
to the preliminary observations, these representation seems to
be promising to model several phenomena in the low frequency
range of the speech spectrum.
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