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Abstract 
Hierarchical prosody structure generation is an important but 
challenging component for speech synthesis systems. In this 
paper, we investigate the use of enhanced embedding (joint 
learning of character and word embedding (CWE)) features 
and different model fusion approaches at both character and 
word level for Mandarin prosodic boundaries prediction. For 
CWE module, the internal structures of words and non-
compositional words are considered in the word embedding, 
while the character ambiguity is addressed by multiple-
prototype character embedding. For model fusion module, 
linear function (LF) and gradient boosting decision tree 
(GBDT), are investigated at the decision level respectively, 
with the important features selected by feature ranking module 
used as its input. Experiment results show the effectiveness of 
the proposed enhanced embedding features and the two model 
fusion approaches at both character and word level. 
Index Terms: prosodic boundaries prediction, model fusion, 
BLSTM, enhanced embedding features, speech synthesis 

1. Introduction 
Prosody structure plays an important role in both naturalness 
and intelligibility of speech [1]. It splits an utterance into 
prosodic units which can be easily understood by people. 
Therefore, identifying the phrase boundaries of different 
prosodic units from text is crucial in speech synthesis. 

In mandarin speech synthesis systems, a typical 
hierarchical prosodic structure is widely employed to 
distinguish different levels of pauses between words in speech. 
Normally, the prosodic boundaries are often classified into 
prosodic word (PW), prosodic phrase (PPH) and intonational 
phrase (IPH) [2]. Traditional methods including classification 
and regression tree, memory based learning, conditional 
random field (CRF) and deep recurrent network are adopted to 
predict prosodic boundaries with linguistic class features (such 
as part-of-speech (POS), word-terminal syllables etc.) [3-10]. 
However, the linguistic class features are discrete linguistic 
representations of words, which don’t take into account the 
distributional behavior of words [11]. And this issue has been 
addressed by word embedding (also known as distributed 
word representation) [12][13], which encodes a word as a real-
valued low-dimensional vector. Related ideas of word 
embedding have taken effect for statistics parameter based and 
unit selection based speech synthesis system [14][15]. 
Recently, the embedding features are employed for prosodic 
prediction [16]. In [17], character embedding are applied to 

substitute for linguistic class features in bi-directional long-
short term memory (BLSTM) [18] recurrent network for 
Mandarin prosodic boundaries prediction. Similar work can be 
found in [19], which utilizes word embedding to argument, 
rather than replace, linguistic class features for English 
prosodic phrasing and prominence prediction. 

Note that [17] represents one character with only one 
vector, which is insufficient for Mandarin characters that are 
much more ambiguous. While in [19], the internal structures 
of words are ignored when learning word embedding. 
However, in Mandarin, a word, usually composed of several 
characters, contains rich internal information. Hence an 
intuitive idea is to take into account internal characters for 
learning word embedding. Besides, not all Mandarin words are 
semantically compositional, such as transliterated words. Thus, 
a character-enhanced word embedding model (CWE) and a 
multiple-prototype character embedding model [20] are 
employed to address these issues in this work. Meanwhile, it 
would be meaningful to investigate the effects of word 
embedding for Mandarin prosodic boundaries prediction since 
the word is often used as the ideographic unit in Mandarin, 
while only character embedding is considered in [17]. 

Instead of simply combining embedding with linguistic 
class features [19], we conduct a complementary research 
inquiry to focus on model fusion at the decision level. In our 
work, we fuse the results from CRF [9] and BLSTM [10], 
which shows the best reported results with linguistic class 
features and embedding features respectively. Indeed, this 
manifests the idea of ensemble learning (i.e. boosting, results 
fusion), which is designed to improve prediction accuracy of 
single predictors [21] [22]. 

In this paper, we explore the novel use of ensemble 
learning (for model fusion module) and enhanced embedding 
features into Mandarin prosodic boundaries prediction. There 
are three main contributions. (1) LF-based and GBDT-based 
model fusion methods are proposed to predict prosodic 
boundaries. By model fusion, the dependency of the final 
result on each single classifier can be figured out. (2) The 
enhanced embedding features which take into account the 
internal of words, character ambiguity and non-compositional 
words are investigated. (3) Different operated levels for 
Mandarin prosodic boundaries prediction are compared. 

2. Enhanced embedding features 
Word embedding represents words as continuous vectors in a 
low-dimensional space based on the distributional hypothesis 
that words in similar contexts have similar meaning. Based on 
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this hypothesis, various embedding models have been 
developed, including continuous bag-of-words model 
(CBOW), Skip-Gram model [12] and Global C&W [13]. We 
will take CBOW for example and demonstrate the framework 
of CWE on CBOW. 

2.1. Basic embedding features 
We use CBOW, which takes a word or a character as basic 
unit as basic model to generate basic embedding features. The 
training objective of CBOW is to combine the embedding 
features of context words to predict the target words. Formally, 
given a word sequence � = {��, … , ��} , the objective of 
CBOW is to maximize the average log probability, 

�(�) = �
� ∑ �	
 �� (�
���
�� |�
��, … , �
��)                     (1) 

where �  is the context window size of target word. CBOW 
formulates the probability �� (�
|�
��, … , �
��)  using a 
softmax function as follows: 

��(�
|�
��, … , �
��) = ��� (�� �∙��)
∑ ��� (�� �∙���)�����

                  (2) 

where �  is the word vocabulary, !
  is the vector 
representation of the target word �
 and !" is the average of 
all context word vectors: 

!# = �
$� ∑ !%%�
��,…,
��,%&
                                               (3) 

An example of CBOW is shown in Figure 1(A), where 
yellow boxes are word embedding of context words, which are 
combined together to get the embedding (the orange box) for 
prediction of the target word.  

Xo

B
C1

E
C5

B
C2

E
C1

Xo

M
C3

E
C3

M
C4

E
C5

B
C4

M
C6

B
C3

M
C2

e.g { (prosody), (structure), (prediction)} B,M,E: character position in a word
Ci: different cluster of character

(A) (B)

+

+

Figure 1: (A) CBOW; (B) position-cluster-based multiple-
prototype character embedding for CWE. 

2.2. Enhanced embedding features 

2.2.1. Character-enhanced word embedding (CWE) 

Character-enhanced word embedding (CWE) considers 
character embedding in an effort to improve word embedding. 
We denote the Mandarin character set as ' and the Mandarin 
word vocabulary as � . Each character *
 ∈ '  is represented 
by vector '
 and each word -
 ∈ � is represented by vector 
�
. 

As we learn to maximize the average log probability in 
Equation (1) with a word sequence � = {��, … , ��} , we 
represent context words with both character embedding and 
word embedding to predict target words. Formally, a context 
word �%  is represented as: 

 !% = �
$ (�% + �

/0
∑ '1

/0
1�� )                                 (4) 

where �%  is the word embedding of �% , 2% is the number of 
characters in �% , '1 is the embedding of k-th character *1 in �% . 

Note that multiplying �
$  is crucial because it maintains 

similar length between embedding of compositional and non-
compositional words. A non-compositional word list is built 
manually and their characters are not considered when 
learning these words. 

2.2.2. Multiple-prototype character embedding 

Mandarin characters are highly ambiguous. Here we employ 
multiple-prototype character embedding to address this issue. 
The idea is that, we keep multiple vectors for one character, 
each corresponding to one of the meanings.  

As demonstrated in Figure 2(B), we keep three embedding 
for each character *, ('4, '�, '5), corresponding to its three 
types of position in a word (Begin, Middle, and End). Hence, 
Equation (4) can be rewritten as: 

!% = �
$ (�% + �

/0
('�4 + ∑ '1�

/0��
1�$ + '/0

5 )                        (5) 

 Motivated by the position-based character embedding, for 
each character *, we can also cluster all its occurrences into 
 26 cluster and build one embedding for each cluster, shown in 
Figure 1(B). Take context word  �% = {*�, … , */} for example, 

'1
789:�

will be used to get �% . Define ;() as consine similarity, 
then 

�1<>� = arg max
kr

;('1
78, ?6"@A��A)                                   (6) 

  ?6"@A��A = ∑ !A
%��
A�%��  

                        = ∑ �
$ (�A + �

/B
%��
A�%�� ∑ 'C<"DA)EFG�B          (7) 

CC<"DA is the character embedding most frequently chosen 
by �A  in the previous training. After obtaining the optimal 
cluster assignment collection I = J��<>�, … , �/0

<>�K,we can get 
the embedding !%  of �%  as  

!% = �
$ (�% + �

/0
∑ '1

789:�)/0
1��                                   (8) 

which can be further used to obtain !" using Equation (3) 
for optimization. 

In this work, for each position of a character (L, M, N), we 
learn multiple embedding to solve the possible ambiguity issue 
confronted in this position. We designate it as position-cluster-
based multiple-prototype character embedding. An example of 
joint learning of enhanced embedding in CEW is showed in 
Figure 1(B), where the word embedding (blue boxes in figure) 
and character embedding (green boxes) are composed together 
to get new embedding (yellow boxes).  

3. Model fusion approach 
As a modelling approach we adopt BLSTM that involves 
complex contextual dependencies and has been recently shown 
to provide state-of-the-performance across various dynamic 
modeling tasks [24][25][26] as one of single classifiers. 
Another single classifier is the best shallow model CRF. 

The flowchart of proposed framework of model fusion is 
shown in Figure 2. Firstly, two single classifiers CRF and 
BLSTM, which use linguistic class features and embedding 
features respectively are trained, then the probability of Breaks 
(PW, PPH and IPH) can be obtained by these two single 
classifiers; Next, by a feature ranking module, we can acquire 
the importance of each feature, which is realized by ranking 
the F-Measure [27] value that promotes by this feature. Finally, 
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the output probabilities, together with the important features 
are consisting of the inputs for model fusion module. During 
model fusion, two different methods, LF and GBDT are 
employed to make the final prediction. 
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Figure 2: Flowchart of model fusion. 

3.1. LF-based model fusion 
LF-based model fusion has been applied to fuse multiple 
parameterizations for high quality speech synthesis [28]. For 
LF-based model fusion, the predictions from all the single 
classifies are combined through a weighted majority vote to 
produce the final prediction: 

O(�) = PQ
R(∑ S<�<�� O<(�))                                       (9) 
where S<  is the weight contribution of each respective 
classifier O<(�). Their effect is to give higher influence to the 
more accurate classifiers in the sequence. In order to clearly 
analyze the dependency of results on each single classifies, we 
set the sum of the weight coefficient to 1. 

3.2. GBDT-based model fusion 
GBDT is an additive classification (or regression) model 
consisting of an ensemble of trees, fitted to current residuals 
(gradient of the loss function), in a forward step-wise manner. 
A decision tree partitions the space of all joint predictor 
variant into disjoint regions I%,j=1,2,…,J as represented by the 
terminal nodes of the tree.  A constant T% is assigned to each 
such region. Thus a tree can be formally expressed as  

U(�, V) = ∑ T%W
%�� XRYZ�(� ∈ I%)                                 (10) 

XRYZ� = [1, (� ∈ I%)
0, 	^ℎZ�P                                                      (11) 

Here, x  is the input feature set. Then GBDT is a sum of 
such trees, where M is the numbers of trees in GBDT, 

O�(�) = ∑ U(�, V<)�<��                                                 (12) 
Training process consists of fitting an ensemble of 

decision trees, each of them are trained separately in a 
sequential manner. Predicting is accomplished by adding the 
predictions of each decision tree, as Equation (12) suggests. 
For more details, refer to [29]. Shrinkage techniques [29] are 
employed in our work to prevent over fitting. 

4. Experiments and results analysis 
For evaluating the effectiveness of the proposed approaches, 
we rely on a speech synthesis corpus recorded by a 
professional female speaker. The corpus contains 20000 
sentences and more than 400000 syllables. Prosodic 
boundaries (PW, PPH and IPH) are annotated by two expert 
annotators who have access to the audio and their text 
transcriptions and the labelling consistence is ensured. Word 
segmentation and POS tagging are carried out by a front-end 
preprocessing tool. The accuracy of word segmentation is 96.6% 
and the accuracy of POS tagging is 96.4%. The whole corpus 
is partitioned into training, validation and test set for all 
experiments according to 8:1:1. 

We collect 15 G Mandarin text corpus relevant to our 
prosody corpus for embedding training [30]. The word and 
character vocabulary size is 514,703 and 83,608 respectively. 
Both character and word embedding dimension is set as 100 
and context window size is set as 5 during training. For 
optimization, we use both hierarchical softmax and 10-word 
negative sampling. 

In all the experiments, PW, PPH and IPH are predicted 
hierarchically. The predicted boundary from the lower level is 
used as an input feature for the current boundary for labeling 
decision.  

4.1. Systems built 
All prosodic boundaries prediction systems are built at both 
word and character level in our experiments. For all BLSTM-
based systems, a 3-layer neural network consisting a single 
non-recurrent layer, followed by 2 stacks of bidirectional 
layers (each with 256*2 LSTM hidden units), and a binary 
output softmax layers is used. All networks are trained with a 
momentum of 0.9, an initial learning of 0.001 for the first 10 
epoch, and then decreases by 20% after each epoch. While in 
model fusion, the best performance of each single classifier is 
employed. Based on these, the following systems are built. 

1. CRF: Linguistic class features used for prosodic 
boundaries prediction based on CRF. These features include 
POS tags, the length of words and word position in sentence, 
etc. For character-based CRF, the character position in the 
word is also included in features set.  A greedy algorithm is 
employed to optimize the feature templates that used for CRF. 
Specifically speaking, if F-Measure [27] is improved by cross 
validation on test sets, then this template is supposed to be a 
part of final feature template. The CRF++ toolkit [31] is used 
for the CRF-based prosodic prediction system.  

2. BLSTM_CBOW: Basic embedding used for prosodic 
boundaries prediction based on BLSTM. The basic embedding 
is generated by CBOW model using wer2vec toolkit [23]. 

3. BLSTM_CEW: Enhanced embedding used for 
prosodic boundaries prediction based on BLSTM. The 
enhanced character embedding is generated by multiple-
prototype character embedding based on CEW, while 
enhanced word embedding is generated by CEW model.  

4. LF: LF-based model fusion used for prosodic 
boundaries prediction based on the output probability of the 
two single classifiers (CRF and BLSTM), while other features 
that generated from feature ranking module are ignored.  

5. GBDT1: GBDT-based model fusion used for prosodic 
boundaries prediction based on the output probability of the 
two single classifiers (CRF and BLSTM), while other features 
that generated from feature ranking module are ignored.  The 
depth and number of trees in GBDT1 is set as 2 and 36 
respectively. 

6. GBDT2: GBDT-based model fusion used for prosodic 
boundaries prediction based on the output probability of the 
two single classifiers (CRF and BLSTM), together with the 
features that generated from feature ranking module as input. 
The depth and number of trees in GBDT2 is set as 4 and 36 
respectively. 

Table 1 and 2 shows the performance of all six systems 
described in 4.1. We report our results in terms of F-Measure 
[27], which is defined as the harmonic mean of precision and 
recall.  We analyze the results below. 
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Table 1. Performance of F-Measure at character level. 

Systems CRF BLSTM 
CBOW 

BLSTM 
_CEW LF GBDT1 GBDT2 

PW 95.39 95.49 95.65 95.96 96.73 96.65 
PPH 82.01 81.38 81.79 82.84 83.28 83.53 
IPH 72.55 73.70 74.31 75.22 76.13 76.85 

Table 2. Performance of F-Measure at word level. 

Systems CRF BLSTM 
CBOW 

BLSTM 
CEW LF GBDT1 GBDT2 

PW 95.52 95.79 95.90 96.19 96.43 96.79 
PPH 82.25 82.95 83.36 84.17 84.82 85.25 
IPH 79.51 81.08 81.74 82.88 83.67 84.73 

4.2. Evaluation of operated level 
Table 1 and 2 clearly shows that word-based systems achieve 
superior performance than character-based systems on all three 
prosodic boundaries, especially in higher boundaries (IPH). 
The contribution factor for this improvement is that the word 
is often used as the ideographic unit in Mandarin, which 
carries more semantic information than isolated character. 
Therefore, it is more interpretable word embedding (rather 
than character embedding in [17]) can achieve superior 
performance than linguistic class features.  

4.3. Evaluation of enhanced embedding features 
To evaluate the effects of enhanced embedding features, we 
compare the results of BLSTM_CBOW with BLSTM_CEW. 
Table 1 and 2 shows that by using the enhanced embedding 
features (at both character and word level), the performance on 
all three prosodic boundaries is improved, which proves the 
effectiveness of proposed enhanced embedding for Mandarin 
prosodic boundaries prediction. Such results indicate the 
necessity of considering non-compositional words and words’ 
internal information for word representation, as well as 
considering different character representation according to its 
position and clusters. 

4.4. Evaluation of LF-based model fusion 
More detailed results of system LF are presented in table 3, 
where S�, S$ are the weight coefficients of CRF and BLSTM 
respectively, Fc and Fw are the F-Measure achieved at 
character and word level respectively. 

Table 3. The results of system LF.  
Boundary `a `b Fc `a cb Fw 

PW 0.38 0.62 95.96 0.42 0.58 96.19 
PPH 0.36 0.64 82.84 0.35 0.65 84.17 
IPH 0.41 0.59 75.22 0.43 0.57 82.88 

Compare with the performance of single classifier systems 
(CRF and BLSTM) from Table 1 and 2, system LF boosts the 
performance on all three prosodic boundaries, which proves 
the effectiveness of proposed model fusion method. Moreover, 
from the weight coefficients, we could see the dependency of 
results (at both character and word level) on BLSTM is greater 
than that of CRF. This can be explained by system BLSTM 
achieves superior performance than system CRF. 

4.5. Evaluation of GBDT-based model fusion 
Table 1 and 2 shows that system GBDT1 achieves superior 
performance than system LF. It can be explained by LF is just 
a linear combination of two single classifiers, while GBDT 

exploits the strength of ensemble learning. And system 
GBDT2 shows an absolute increase of around 5% than system 
CRF for IPH prediction (at both character and word level). 
Such improvement at word level (5.22%) for IPH is more 
obvious than the best absolute improvement in [19] (2.19%) 
where the author just combines the word embedding features 
with linguistic class features. (We also conduct the approach 
in [19] on our corpus, where absolute improvement is only 
3.09% for IPH prediction). Such result indicates model level 
fusion is more effective than feature level fusion. This may be 
caused by such two features may not suitable to fuse with each 
other as they are two different representation of words and 
characters, while model fusion can avoid this problem well. 

Also system GBDT2 achieves the best performance over 
all six systems-including GBDT1, which shows the 
effectiveness of feature ranking module. To evaluate the 
effects of two single classifiers for system GBDT2, we further 
calculate the contribution of each feature by Gini importance 
[32], which is used as a general indicator of feature importance. 
Take IPH prediction for example, the degree of the top five 
features contributions for IPH prediction on word-based 
GBDT2 are listed in Table 4, where the top 2 features are the 
output of BLSTM and CRF. This means the output from two 
single classifiers are playing the dominant role rather than 
other features selected from feature ranking module. 

Table 4. The degree of features Contribution for IPH 
prediction on word-based GBDT2. 

Rank Features description Contribution (%) 

1 Output of BLSTM 42.8 
2 Output of CRF 32.5 
3 POS 6.28 
4 The predicted boundary from the lower level 5.67 
5 The syllable distance to the end of the sentence 3.01 

5. Conclusions 
In this paper, we investigate the effects of enhanced 

embedding features and two model fusion approaches at both 
character and word level, as well as show their effectiveness 
for Mandarin prosodic boundaries prediction. Our results also 
show that word-based approach is more suitable than 
character-based approach and model fusion level is more 
effective than feature level fusion for Mandarin prosodic 
boundaries prediction. Meanwhile, the model fusion results 
indicate that the dependency of results on BLSTM is greater 
than CRF, and the features generated from feature ranking 
module can further boost the performance of prosodic 
boundaries prediction.  

In the future, we wish to explore the use of our proposed 
enhanced embedding features and models fusion approaches 
for other aspects of prosody prediction such as pitch contour at 
the word or phrase level, as well as for predicting the spectral 
parameters for Mandarin speech synthesis. 
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