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Abstract
This paper proposes an approach, named phonetic context em-
bedding, to model phonetic context effects for deep neural net-
work - hidden Markov model (DNN-HMM) phone recogni-
tion. Phonetic context embeddings can be regarded as continu-
ous and distributed vector representations of context-dependent
phonetic units (e.g., triphones). In this work they are com-
puted using neural networks. First, all phone labels are mapped
into vectors of binary distinctive features (DFs, e.g., nasal/not-
nasal). Then for each speech frame the corresponding DF vector
is concatenated with DF vectors of previous and next frames
and fed into a neural network that is trained to estimate the
acoustic coefficients (e.g., MFCCs) of that frame. The values
of the first hidden layer represent the embedding of the input
DF vectors. Finally, the resulting embeddings are used as sec-
ondary task targets in a multi-task learning (MTL) setting when
training the DNN that computes phone state posteriors. The ap-
proach allows to easily encode a much larger context than alter-
native MTL-based approaches. Results on TIMIT with a fully
connected DNN shows phone error rate (PER) reductions from
22.4% to 21.0% and from 21.3% to 19.8% on the test core and
the validation set respectively and lower PER than an alternative
strong MTL approach.
Index Terms: embeddings, multi-task learning, speech recog-
nition, acoustic modeling

1. Introduction
This paper addresses the problem of phonetic context modeling
for hybrid DNN-HMM acoustic modeling [1, 2, 3, 4] where the
use of senones, i.e., clustered context-dependent (CD) phone
state targets, is the standard approach to model the effects of
coarticulation [2].

While senones have been shown to work well in practice
they may have some potential disadvantages. These include
the senone’s intrinsic clustering problem [5], i.e., same-senone
CD-phone states (e.g., triphone states) are assigned the same
probability even when their frequency can be very different,
and the “equality problem” where same-monophone senones
and different-mononophone senones are equally discriminated
by the DNN [6, 7].

Recently, multi-task learning (MTL) approaches to context
modeling have been proposed as alternative or complementary
approaches to senones [8, 6, 7]. MTL [9] is a training strat-
egy that aims at improving the generalization performance of a
classifier (or regressor) on a task by forcing it to simultaneously
learn related secondary tasks. The rationale is that domain spe-
cific information of related tasks acts as an inductive bias for
primary task learning.

In MTL-based approaches to phonetic context modeling
MTL can be either used as an alternative to senones or com-
bined with them. In [7] the primary senone classification task

is jointly learned with secondary tasks that can be either pre-
diction of (i) (pl, qn), (pr, qn) tuples where pl and pr are the
left and right context phones respectively and qn is the current
phone state; or (ii) of (al, qn), (ar, qn) tuples where pl and pr
are left and right context articulatory/distinctive feature values
(e.g., ar = open vowel).

In [8] a primary monophone state classification task is
paired with two secondary tasks: classification of pl and of pr .
Apart from the general motivation of MTL, learning to classify
context phones while learning to classify target mononophone
states, may force the DNN to learn context-dependent features
(in its hidden layers) given a monophone class. Such context-
dependent feature space partition can be useful during recogni-
tion even if context information is not provided at test time.

In this paper I propose phonetic context embedding vectors
as secondary task target of a DNN that classifies monophone
states. Here phonetic context embeddings are real-valued dis-
tributed vector representations of a target monophone and its
neighboring phones. To some extent they could be regarded
as continuous vector representations of context-dependent pho-
netic units (e.g., triphones). The concept of embedding, de-
fined as a continuous vector representation of discrete entities,
has been successfully applied to words, in natural language pro-
cessing (e.g., [10]), and in language modeling [11, 12, 13] and
acoustic modeling/lattice re-scoring [14] for ASR.

Phonetic-context embeddings are extracted at each speech
frame from the first hidden layer of a neural network (NN) that
takes as input the vector of distinctive features (DFs, also re-
ferred to as articulatory features) of the target monophone and
the DF vectors associated to the left and right context frames
to estimate the acoustic coefficients of the frame of the target
monophone, i.e., the central frame (see Figure 1 left). The ex-
pectation is that embeddings group together patterns of DFs and
of DF vectors that sound alike.

The working hypothesis is that phonetic context embed-
dings have at least two potential advantages w.r.t. discrete con-
text representations such as, e.g., context phones [8] or [7]’s
tuples. First, they can easily encode very long contexts into
fixed length real-valued vectors. Second, they are secondary
task targets that by construction implicitly take into account
whether context phones affect the acoustic realization of the tar-
get phone, while, e.g., in [8], all context phones are equally im-
portant independently of how they actually influence the target
phone through coarticulation.

On the other hand if the embeddings are poor and encode
only little information (e.g., different target monophones are
collapsed into almost identical representations because the em-
bedding dimensionality is too low) they might act as a too strong
regularization term for primary task learning.

Note that the task performed by the neural network from
which the embeddings are extracted is very similar to that of the
decision tree that cluster context-dependent classes into senones
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[15] or to that of DNNs in statistical parametric synthesis that
maps linguistic features into first order statistics of speech pa-
rameters [16].

Finally the present work is inspired by our work on “artic-
ulatory” DNN-HMM phone recognition [17, 18], which uses
measured articulatory information and is based on the assump-
tion that compact models of coarticulation (as opposed to thou-
sands of senones) can be achieved through a more explicit use
of speech production information. However, recorded articu-
latory datasets are very small and the articulatory data provide
largely incomplete information about speech production. The
phonetic context embeddings proposed here were born as an at-
tempt to substitute measured real-valued articulatory informa-
tion with real-valued speach production information extracted
from linguistic binary articulatory features.

2. Phonetic context embeddings
In the first definition of phonetic context embedding proposed
here the embedding is a continuous and distributed vector repre-
sentation of a sequence of phone labels associated to a sequence
of consecutive speech frames. I refer to this embedding as pc-
embedding.

In this work the embeddings are learned by neural networks
(NNs), not necessarily deep. The figure within the dashed line
rectangle of Figure 1 shows how a pc-embedding is computed.
Given a window of speech frames centered at frame n, each
frame phone label is converted by a look-up table into a vector
of binary distinctive features. The DFs are listed in Table 1.
The binary vectors are then concatenated and used as input to a
neural network that is trained to predict the acoustic coefficients
of the central frame.The embedding is always represented by
the first hidden layer, independently of the number of (optional)
hidden layers used.

Note that one-hot representations of phones could be di-
rectly used as input to the NN without mapping phones into DF
binary vectors.

In my experiments it turned out that using NNs with recti-
fied linear units (ReLUs, [19, 20, 21]) is a key factor to extract
“good” embeddings. Alternative non-linearities, e.g., sigmoids,
did not produce any useful embedding. One reason seems to be
the sparse representations naturally produced by ReLUs. Spar-
sity is also the reason why embeddings are always represented
by the first hidden layer, which encodes a much sparser repre-
sentation than the next hidden layers. Even when a penalty was
applied on the activations of the topmost layers the first layer al-
ways turned out to generate much better embeddings for phone
recognition.

2.1. Context-dependent phonetic unit embeddings

Formally, the pc-embedding proposed above is carried out by a
function f(x,w) that takes an input vector x of dimensionality
d = l × k where l is the number of frames in the context win-
dow and k is the overall number of phones (and we can assume
a phone to be represented by a one-hot vector with dimension-
ality k). Its learning parameters are learned by learning the pa-
rameters of the composite function (g ◦ f) = g(f(x,w),w′),
where w′ are learning parameters of g, that maps the sequences
of phones within the context window onto the acoustic coeffi-
cients of the window central frame.

The resulting embeddings can be regarded as embeddings
of context-dependent phonetic units (e.g., triphones), although
it must be pointed out that they are not exactly embeddings of

context-dependent phonetic units. To generate, e.g., triphone
embeddings, we only need to consider a different input x′ rep-
resented by a one-hot vector of dimensionality d = no. of all
logical triphones.

This is a variant to the original phonetic context embedding
(i.e., pc-embedding), which I named n-phone embedding. Note
that in this case, to compute, e.g., triphone embeddings, x′ will
be first mapped on a triple of DF vectors.

One big difference between pc-embeddings and n-phone
embeddings is that in the latter case the embedding represents a
fixed number of phones, i.e. the current phone and its neighbor-
ing phones (e.g., 1 + 2 for triphone embeddings), while in the
first strategy the length of the context window is fixed but the
number of phones it includes can vary.

3. Multi-task learning with embeddings
Once embeddings are computed they are used as secondary task
targets in a MTL setting when training the DNN that has to
classify phone states as primary task (Figure 1).

The overall target cost that the DNN is trained to minimize
is

Etot(θ) = EA(θ) + λEB(θ)

where θ is the vector of all learning parameters, λ is a weighting
term.

EA(θ) =

N∑

n=1

K∑

k=1

tAnk lny
A
nk(x, θ)

is the usual cross-entropy target cost function used for classi-
fication (primary task). N is the overall number of training
frames, K is the number of monophone states, yn(x, θ)

A is
the DNN K-dimensional softmax output for the primary task
and tAn is the one-hot target vector of the primary task at frame
n.

EB(θ) =

N∑

n=1

(yB
n (x, θ)− tBn )

2

is the sum-of-squares error cost for the secondary task.
yn(x, θ)

B is the DNN (ReLU) output for the secondary tasks
and tBn is the embedding vector at frame n. The additional
ReLU output layer for the secondary task is only used during
training and removed during evaluation.

4. Experimental setup
Experiments with the DNN-HMM phone recognition systems
were conducted on the TIMIT dataset [22] following the stan-
dard procedure where all “sa” utterances are removed and keep-
ing the usual splitting for training, validation and testing.

4.1. DNN-HMM phone recognition systems

Recognition was performed on the original set of 61 phones and
3-state HMMs were used to model monophones. The HMM
emission probabilities were computed through the DNN phone
state posteriors. HMMs were combined with a standard bigram
phone language model. After decoding the 61 phones were col-
lapsed in the usual set of 49 phones [23].

As in previous work (e.g., [8, 24]) the acoustic coefficient
vectors used as input to the DNN consisted of 40 log mel-
filtered spectral coefficients (MFSCs) plus deltas and delta-
deltas, and log energy plus its derivatives, all computed every
10ms from 25ms long frames . The DNN had 4 hidden layers
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Figure 1: Phonetic context embedding extraction and multi-task learning.

with 2000 ReLUs each. The single-task learning (STL) base-
line DNN had a single output layer with 61 x 3 = 183 softmax
units while the MTL DNNs had an additional output layer with
a number of ReLUs that depended on the dimensionality of the
embedding vector.

The SLT DNN parameters were randomly initialized and
then updated using backpropagation and stocastic gradient de-
scent with initial learning rate = 0.075, momentum = 0.9 and
mini-batches of 1000 training examples. At each epoch the
learning rate was decreased by multiplying it to a learning rate
decay factor = 0.75. Training was when the classification er-
ror on the development set did not decrease for 2 consecutive
epochs. The same hyper-parameters were used for the MTL
DNNs. The hyper-parameters were chosen with the goal of a
trade-off between a strong baseline DNN and fast training of
MTL DNNs.

The secondary task weight λ ranged from 0 to 2 with 0.2
increments and its optimal value was the one producing the best
recognition performance on the validation set. In all training
examples where the central frame was silence λ was set to 0
(i.e., the secondary task target was ignored).

It is worth to point out that, contrary to most MTL set-
tings where target costs and output activations for primary and
secondary tasks are of the same type, here both target costs
(cross-entropy vs. square error) and output activations (soft-
max vs. ReLU) are different. That makes difficult to find a
principled way to scale λ (which, in our setting correspond to
scale the learning rate for the secondary task) depending on the
secondary task target dimensionality.

4.2. Context embeddings

This sections describes the neural networks that extract phonetic
pc-embeddings and n-phone embeddings.

The input to the NNs from which pc-embeddings were ex-
tracted (pceNN) consisted of vectors of 37 DFs (shown in Table
1). The number of DF vectors ranged from 11 to 31 (with same-
length left and right context). The net target was a vector of 20
MFSCs plus deltas and delta-deltas (computed every 10ms from
25ms long frames) , then normalized to lie in the [0 1] range.

I experimented with net with either 1 or 3 hidden layers,
with a number of ReLU nodes of either 300 or 600, and a sig-

consonant, voiced, unvoiced, fricative, nasal, stop
approximant, affricate, labial, dental, alveolar, lateral
post-alveolar, palatal, velar, glottal, syllabic, flapping

vowel, diphtong, nasalized, r-merged, close, close-mid
mid, open-mid, open, front, central, back, long, short

close2, close-mid2, mid2, open-mid2, open2
front2, central2, back2, long2, short2, silence

Table 1: List of all 37 binary distinctive features used in the
experiments. Number 2 refers to the 2nd vowel of a diphtong.

moid output layer. All examples where the target frame was si-
lence were removed from the training set (as all DFs, excluding
the silence DF, do not affect non-speech sounds) while the si-
lence DF was taken into account to build phonetic embeddings.
The net was trained as the phone state classifier DNN but with
larger learning rate (0.1) and learning decay factor (0.99). The
target cost was the sum of squares error.

An alternative net (qeNN) was trained to compute n-phone
embeddings described in section 2.1. Specifially the net was
trained to extract embeddings of quin-phones, so it received as
input 5 vectors of distinctive features (one per each phone of
the quin-phone). qeNN had the same architecture and learning
schedule of a 3-hidden layer pceNN.

5. Results
Figure 2 plots the validation and test core PERs over the λ
weight term of 2 different phone recognition systems (con-
tinuous lines) where the MTL DNNs were trained using pc-
embeddings as secondary task targets. λ = 0 corresponds to
the baseline system (i.e., system with STL DNN). It can be seen
that for both systems the optimal λ values, computed on the val-
idation set, are values that produce PER values in the core test
very close to the lowest PER in the core test. All of them are
significantly lower than the baseline.

For comparison with alternative context modeling MTL-
based approaches, Figure 2 shows (in dashed line) the best per-
forming MTL-based system proposed in [8] and described in
the introduction. That system uses two secondary tasks, classi-
fication of the left and right context phone labels. Although the
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Figure 2: Core test (blue lines) and development (black lines)
PERs vs. λ of 2 pc-embedding based systems (continuous lines)
and [8]’s best performing system (dashed line) . For compar-
ison with the dash line system, the λ of the 2 pc-embedding
systems was divided by 2. pc-embeddings were extracted from
3-hidden-layer nets with 300 ReLUs per layer. The 2 pc-
embedding systems only differ in the number of input DF vec-
tors, 25 vs 13 (circle marker).

System Secondary λ Dev Core Test
task target PER(%) PER(%)

Baseline SLT - - 21.34 22.39

S&D[8] l-p r-p 0.2 20.55 21.51

n-phone 5-phone E 1.2 20.59 21.93
E 3H

pc-E 1H 500u 11w E 1.4 20.52 21.81

pc-E 1H 500u 27w E 1 20.27 21.76

pc-E 3H 300u 13w E 1.8 20.02 21.49

pc-E 3H 300u 25w E 1.6 19.76 21.01

Table 2: Core test and development PERs for baseline and
MTL systems. E stands for embedding. 1H and 3H indicate
the number of hidden layers in the embedding neural net. l-p
and r-p stand for left and rigth phone respectively. 11w indi-
cates the number of input distinctive feature vectors used in pc-
embedding. u indicates the number of units per hidden layer.

system significantly outperforms the baseline it does not per-
form as well as the systems based on pc-embedding.

The better performance of pc-embeddings can be mainly
attributed to two factors. First, in these experiments pc-
embeddings encode larger context. The approach by [8] could
use a larger context but that would imply more secondary tasks
and computation as opposed to the pc-embedding based ap-
proach. Second, pc-embeddings encode higher level informa-
tion about the context, i.e., patterns of context elements (and
current phone), while in [8] approach each context element, i.e.,
phone in the context, is considered independently of the other
elements.

Note that in [8] the relative PER reduction produced by
their approach (over a baseline stronger than the baseline used
here) may be due to a learning schedule that is more appropri-
ate for a MTL setting or might be due to some specific learn-
ing schedule for the secondary tasks. However, in both cases
any MTL-based approach, included the pc-embedding approach
proposed here, could show better performance.

Table 2 shows PERs on TIMIT development and test sets
for the baseline and different embedding-based systems with
optimal λ (computed on the development set). One clear result
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Figure 3: Probability of activation of pc-embedding ReLUs ex-
tracted from a 1-hidden layer net and a 3-hidden layer net.
Units are sorted according to their probability of activation. In
this case both nets have 300 ReLUs per hidden layer.

is that the pc-embeddings outperform n-phone embeddings.
Within pc-embedding based systems embeddings of larger

phonetic contexts usually produce better results.
Another interesting result is that pc-embeddings extracted

with 3-hidden layer NNs outperform those extracted from 1-
hidden layer NNs (which is more evident when plotting PERs
vs. λ, not shown). Despite in both cases the embedding is rep-
resented by the first hidden layer, adding more hidden layers
produces better embeddings. One possible explanation is that
the additional layers might act as a sort of regularization on
the embedding since complex feature extraction is left to the
deeper layers. Figure 3 may provide a better understanding of
the difference between the two cases. It shows he probabil-
ity of activation [20] of each pc-embedding ReLU unit (i.e.,
the average number of times a unit value is greater than 0) in
the pc-embedding vector extracted from a 1-hidden layer net
(red) and a 3-hidden layer net. The figure explains why in
the phone recognition experiments the best 1-hidden layers “re-
quired” more hidden units than 3-hidden layer nets. Note that
in the 1-hidden layer pc-embedding case all units with 0 proba-
bility of activations were removed from the final pc-embedding
vector, i.e., the vector used in MTL DNN training. In both cases
the average sparsity ratios of the embedding vector, i.e., the av-
erage number of 0-values, were both around 50%.

6. Conclusions
This paper addresses the problem of context modeling for
DNN-based acoustic modeling. It proposes phonetic context
embeddings, i.e., real-valued distributed vector representations
of a phone and its interaction with the context. Phonetic em-
beddings are first extracted by neural networks that map phone
labels into acoustic coefficients and are then used as secondary
task targets when training the DNN of a DNN-HMM phone
recognition system. Results on TIMIT show the utility of the
context embeddings with PER reduction on the test core from
22.4% to 21.0% and lower PERs than an alternative approach.
Although in this paper phonetic context embeddings were tested
on fully connected DNNs the embedding-based approach can
be applied to any DNN architecture, included stronger DNN ar-
chitectures, e.g., max-out DNNs [24].
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