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Abstract

To capitalize on the rapid development of Speech-to-Text (STT)
technologies and the proliferation of open source machine
learning toolkits, BBN has developed Sage, a new speech
processing platform that integrates technologies from multiple
sources, each of which has particular strengths. In this paper, we
describe the design of Sage, which allows the easy interchange
of STT components from different sources. We also describe
our approach for fast prototyping with new machine learning
toolkits, and a framework for sharing STT components across
different applications. Finally, we report Sage’s state-of-the-art
performance on different STT tasks.

Index Terms: speech recognition toolkit

1. Introduction

BBN’s Byblos STT system [1], which has always maintained
state-of-the-art performance, has been our main research and
application engine for more than 30 years. In addition to its use
in research, multiple customized versions have also been suc-
cessfully developed for commercial STT applications such as
broadcast monitoring, keyword search, real-time applications
such as speech-to-speech translations and even non-speech ap-
plications such as optical character recognition (OCR). Many of
these customizations address task specific requirements, such as
low-latency or different workflow.

The field of STT has undergone tremendous changes over
the past few years. The introduction of deep learning has gen-
erated substantial and rapid performance advancements rarely
seen before. Meanwhile, the increasing popularity of the open-
source movement leads to the proliferation of state-of-the-art
machine learning and neural network technologies that are
available to researchers as free-to-download toolkits, such as
Kaldi [2], Tensorflow [3], CNTK [4], Caffe [5] and others.
Many of these toolkits come with frequent algorithmic, soft-
ware and recipe updates contributed by the community. To
stay abreast of the continuous innovation, it is advantageous to
have the ability to quickly test out these updates on any prob-
lem of interest and incorporate the useful ones into our own
system. The fast pace of change and proliferation of toolkits
and recipe make fast prototyping and easy integration of tech-
nology paramount. However, compatibility is a major chal-
lenge. Most toolkits are not cross-compatible with each other,
and some are not even “self-compatible”, in that different ver-
sions or branches within a toolkit are incompatible. Further-
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more, recipes and tutorials contributed by the community are
often not written in ways that are easy to generalize and apply
to new applications.

The fast moving technology that is constantly upgrading
makes supporting multiple highly customized STT engines dif-
ficult. This motivates the design of a single framework that al-
lows flexible application specific customization while sharing
the same underlying, evolving STT components.

Sage is BBN’s newly developed STT platform for model
training and recognition that integrates technologies from mul-
tiple sources, each of which has its particular strength. In Sage,
we combine proprietary sources, such as BBN’s Byblos, with
open source software (OSS), such as Kaldi, CNTK and Tensor-
flow. For example, Sage’s deep neural networks (DNNs) [6]
can be trained using Byblos, Kaldi nnetl or nnet2, convolu-
tional neural networks (CNNs) [7] using Kaldi or Caffe, and
long short-term memory networks (LSTMs) [8] using Kaldi as
well as CNTK. The integration of these technologies is achieved
by creating wrapper modules around major functional blocks
that can be easily connected or interchanged. In addition, Sage
software has been designed to make it easy for a group of re-
searchers to use the system, to transfer experiments from one
person to another, to keep track of partial runs, etc.

Sage includes a cross-toolkit finite state transducer (FST)
based recognizer that supports models built using the various
component technologies. To quickly prototype with models
built using newly released machine learning toolkits, Sage also
includes a Python interface that can directly interact with toolk-
its that supply Python API, such as Tensorflow. To make use
of this modularity all the way to the deployed applications our
customers receive (both internal and external), we designed the
“Godec” framework, which allows us to combine the compo-
nents in a flexible graph, all in one single executable. This exe-
cutable (or shared library, for embedding into existing projects)
is intended to serve the needs of experimenters, developers and
customers alike, as it can accommodate batch processing just
as well as low-latency real-time applications. For example, the
configuration for batch mode transcription applications without
any latency requirement may include steps such as speaker in-
dependent (SI) decoding, adaptation, and then speaker adap-
tive (SA) decoding. On the other hand, the configuration for
processing broadcast media may include components such as
speech activity detection, music separation, speaker clustering,
etc. as well as the recognition components. Such a framework
serves both the needs of application specific customization as
well as the sharing of the same underlying software.

The rest of the paper is organized as follows. In the next
section, we describe the overall design of Sage. Then, we de-
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scribe the “Godec” framework in section 3. We report experi-
mental results on different recognition tasks in section 4. The
paper is then concluded in section 5.

2. Design

The design of Sage aims to provide an interface to incorporate
technologies from different projects. Sage has to be flexible
enough to allow components to be easily interchanged, in order
to shorten the time for prototyping. Also, technology transfer is
critical and Sage should allow researchers to transfer the latest
technologies to applications easily.

Modules | Python Godec

Sage Core Library

Figure 1: An overview of Sage’s design

Figure 1 is an overview of Sage’s design. At a high level,
the Sage Core Library is an extension of BBN proprietary soft-
ware and open source software including Kaldi. The design
is carefully constructed so that updates from the open source
projects could be easily transferred to Sage. Using the library,
Sage provides the following services to meet the needs of both
research and production,

e Modular recipes
e Python interface
e Godec - an all-in-one streaming framework

Both the modular design and Python interface are our attempts
to enable fast prototyping, and Godec is a highly configurable
and efficient message passing framework for fast technology
transfer. More details of Godec are available in section 3.

2.1. Modular Recipes

Open source projects often come with recipes to build systems
on standard data sets. Those recipes are often in a form of sep-
arate shell scripts that are not modularized, making it difficult
to maintain the recipes or create new recipes from the existing
ones. We redesign the recipes into a modular form, in which
each module represents a set of interdependent procedures that
can be reused. Figure 2 is an example of Sage’s modular recipe
that is created based on the Kaldi’s standard nnetl and nnet2
recipes.

Sage Modules
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GMM . Kaldi nnet2 recipe
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Figure 2: An example of Sage’s modular recipe that is created
based on Kaldi nnetl (step 1-2) and nnet2 (step 3-5) recipes
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This modular design has three advantages. First, it allows
regression tests for individual modules and makes it easier for
code maintenance. Second, it enables more efficient code reuse
and encourages researchers to exploit different recipes to create
a better recipe. Third, this framework can bring in different
open source technologies outside of the Sage project. These
advantages are important for rapid and effective research and
software development in a collaborative environment.

2.2. Python Interface

As mentioned earlier, the rapid development of speech tech-
nologies has resulted in the proliferation of machine learning
and neural network toolkits. Many of these tools are available in
Python as open source packages. In order to enhance Sage with
the powerful Python ecosystem, the Sage APIs are designed to
be easily used to adopt new technologies. For example, through
the Python Interface, Sage can integrate models trained by Ten-
sorflow. As new technologies become available in Tensorflow,
Sage would gain access to those technologies immediately with-
out the need to reimplement them into our platform. This would
greatly reduce the time and cost of exploring new techniques
on the Sage platform. As a result, this design encourages and
enables faster research and prototyping that would ultimately
help advance the state-of-the-art in the field. Figure 3 shows a
snippet of Python code where Sage decodes with a Tensorflow
model.

import sys

from pySageDecoder import PySageDecoder, PySageDecodable
import tensorflow_wrapper as tf_wp

if __name__ == '__main__':
if len(sys.argv) < 2:
sys.exit("expected arguments: bbn-decoder-args tf_model_file")

tf_model_file = sys.argv.pop()

tf_model_op = tf_wp.load_model(tf_model_file)
decoder = PySageDecoder()

decoder. setup(sys.argv)

while not decoder.done():
features = decoder.get_features()
log_posterior = tf_wp.get_log_posterior(features, tf_model_op)
decodable = decoder.get_matrix_decodable(log_posterior)
decoder.decode(decodable)
decoder.next()

decoder. finalize()

Figure 3: A snippet of Python code where Sage decodes with a
Tensorflow model

3. Godec

While Sage’s modularity and Python bindings are mostly
geared towards enabling fast and flexible research, we also en-
visioned having an overarching framework that would allow for
rapid transfer of advances in research, be flexible in its config-
uration, and yet carry little to no processing overhead. We call
this framework “Godec” (Godec is our decoder), for which we
identified the following specific requirements:

e Single executable: Research experiments often create a
multitude of small scripts and executables that are hard to
transfer into a product. A single executable (or shared li-
brary to facilitate JNI and Python bindings) that is highly
configurable through one central but modular configura-
tion file speeds up transfer time.

e Allow for submodules: As an extension to the above,
the framework should allow for clustering of compo-
nents into submodules that can be reused.



o Parallel processing: The framework needs to be highly
multi-threaded, with each major component running in
its own thread, to make use of a CPU’s multiple cores.

e In-memory: Unless explicitly desired, all intermediate
data should be transferred in memory, reducing unneces-
sary disk I/O.

e Both batch and real-time: The framework should allow
for both streaming and batch input.

e Low latency: In streaming input mode, the framework
should be able to produce low-latency, real-time output.

e Stream-precise: To allow for repeatable and determin-
istic offline experiments, the framework needs to be
stream-precise, i.e. it needs to recreate the same con-
ditions as during training, even when the input is stream-
ing and he exact internal processing order might differ
between otherwise identical runs.

3.1. Framework design

From the above requirements, we designed a combination of
a streaming and messaging network. In this network, compo-
nents connect to each other via channels, with each component
consuming and emitting distinct messages that account for sec-
tions of the stream. It is worth noting that a specific message
can be consumed by as many components as desired; for ex-
ample, multiple ASR decoders may operate on the same feature
message.

This functionality also facilitates easy debugging, since one
can just add an I/O component that “tees oft” a certain stream
and writes it to disk for detailed inspection. Similarly, it al-
lows for convenient isolation of components during develop-
ment, since one can simulate the rest of the network through an
I/O component that feeds messages into the component to be
developed. In such a massively multi-threaded framework, this
kind of isolation is crucial for effective development and debug-
ging. Figure 4 uses feature extraction as an example and shows
how the messages are passed from one component to another.

3.2. Stream synchronization

To achieve the above-mentioned ‘“‘stream-precise” capability,
for any given component, the incoming stream messages have
to be perfectly synchronized. Unlike in a user interface (UI)
framework where the exact time of processing a message (in re-
lation to other ones) is not important as long as it happens fast,
here we have to perfectly align the streams, otherwise experi-
ments would not be deterministic.

This is achieved by each message carrying a “stream time”
counter which says how far this message accounts for in the
overall stream. Note that the stream time is completely arbitrary
and not globally enforced; usually the first feeding component
creates it, and all downstream components work with that defi-
nition.

One particular aspect of note is that all messages have to be
causal, i.e. looking backwards in time. While this is an obvious
requirement for feature and audio streams, it however disallows
“utterance start/end” messages, since those messages would say
“from here on X is true until further notice” instead of “up to
this point X is true”. The reason for this is that one cannot be
both low-latency and stream-precise when having non-causal
messages. To illustrate, imagine a feature extraction component
that processes an audio stream, but also gets utterance start/end
messages from a Speech Activity Detector (SAD). If it got an
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Figure 4: An example sub-network for feature extraction

utterance-start message and started processing all incoming au-
dio from there on, the scenario could arise where the SAD is
slow and issues an utterance-end message for an audio stream
position the feature extractor has already gone past. This can
cause potentially erroneous feature vectors since utterance ends
often require special feature processing. To solve the problem,
the feature extraction either would have to wait indefinitely un-
til it sees the utterance-end message (thus dropping the low-
latency capability since an utterance can be arbitrarily long), or
create erroneous features (which would mean not being stream-
precise). The key realization is that one cannot mix causal and
noncausal messages when having both these requirements. Ap-
plying the requirement of causality to utterance start/end, we in-
stead have “conversation state” messages which essentially say
“up to here we are still within an utterance”. Similarly, some-
thing like an adaptation matrix message says “this adaptation
matrix is valid up to here in the stream”. It is a subtle design
decision, but crucial for the proper function of the network.

3.3. Stream slicing

All components inherit from a common base class that takes
care of the synchronization of the incoming messages. In partic-
ular, unlike truly asynchronous messaging frameworks, a com-
ponent will not process small updates to just one of its input
streams, but rather wait until it has a contiguous chunk in time
that spans all incoming streams. There are several benefits:

e Developers of a new component do not have to worry
about the asynchronous nature of the framework. The
component code only sees a solid chunk in time covering
all streams.

e The base class can ensure to slice the chunks so that the
chunk is “atomic”, e.g. so that it does not contain two
separate utterances. This again reduces a major source
of errors for the developer.



Figure 5 illustrates such a chunk slicing for one comonent.
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Figure 5: Slicing out a contiguous chunk from streams queued
up in front of a component. Top numbers are stream time.

4. Performance and Benchmarking

We evaluated the performance of Sage using a variety of lan-
guages and training conditions. In addition to word error rate
(WER), we also consider the real-time factor and memory foot-
print, which are important constraints for real world applica-
tions. Table 1 summaries the data we used in this evaluation.
For English, we have two training procedures: the first one used
the Switchboard train set that consists of around 370 hours of
data, and the second one includes also the Fisher data and the
total size of the train set is over 2300 hours. Both English sys-
tems use the Switchboard portion of HubS 2000 evaluation set
as the test set. The Russian data comes from a multi-lingual
corpus as described in [9]. In contrast to the English data, the
Russian train set is very small, which consists of only 50 hours
of training data. This condition is similar to the IARPA Babel
project [10] so we could test Sage’s performance under low re-
source condition. The Mandarin data set consists of Mandarin
Callhome(LDC96S34), Callfriend(LDC96S55,LDC96S56) and
HKUST(LDC2005S15) corpora. All the data sets we used in
our experiments are conversational telephone speech(CTS).

Table 1: The data sets used in evaluating Sage

| Language [ Channel [ Train set [ Test set ‘
English CTS 370-hr/2300-hr 2-hr
Russian CTS 50-hr 4-hr
Mandarin CTS 250-hr 3-hr

We first compared the modular recipe with an open source
recipe in Kaldi. This recipe trains a time delay neural network
(TDNN) using Switchboard data [11]. The TDNN consists of
4 hidden layers using P-norm as an activation function. The
input to the TDNN consists of MFCC and I-vector features. Ta-
ble 2 shows the results of modular and open source recipe on
the Switchboard test set, and they are consistent.

With the modular design, we tried to combine different
recipes. In this experiment, we used the bottleneck features
(BN) proposed in [12]. The bottleneck features were prepared
using a nnetl recipe in Kaldi. Then with the features, we per-
form feature space maximum likelihood linear regression (FM-
LLR) for speaker adaptation [13], and we used the adapted fea-
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Table 2: Comparing an open source Kaldi recipe with Sage’s
modular recipe

| Language [ Model [ Recipe [ WER(%) ‘
English | TDNN | Open source 14.0
English | TDNN Modular 14.0

tures to build acoustic models like DNNs using nnetl as de-
scribed in [14], TDNNSs using nnet2 [11], and also LSTMs using
CNTK described in [8]. Table 3 contains the results on the En-
glish, Russian and Mandarin data, and it shows that we can im-
prove system performance by combining different toolkits and
technologies.

Table 3: Results of combining different tools and recipes using
Sage modules

| Language [ Feature(tool) [ Model(tool) [ WER(%) ‘
English BN(nnetl) DNN(nnet1) 11.5
English BN(nnetl) LSTM(CNTK) 10.9
Russian BN(nnetl) DNN(nnet1) 38.6
Russian BN(nnetl) LSTM(CNTK) 38.2
Mandarin BN(nnetl) TDNN(nnet2) 21.2

We evaluated the speed and memory footprint of Sage’s de-
coding pipeline. To evaluate the performance, we used the 2300
hours English system. This system adopts two-pass decoding
where it uses a Gaussian mixture model for SI decoding and
a DNN for SA decoding. The DNN consists of 6 layers and
each layer has 2048 sigmoid units. The input to this DNN is the
spliced bottleneck features trained on the same data with FM-
LLR for speaker adaptation. Table 4 shows the real-time factor
and also the memory consumption of two operating points. This
result shows that we could build a high performance STT sys-
tem running at real-time with only 3GB of memory, which has
only little degradation compared to the research system.

Table 4: Performance of the English 2300-hr system at different
real-time factor and memory consumption
| Language [ 10xRT | 1x RT ‘

[ English(2300-hr) | 9.5% (36GB) | 10.8% (3GB) |

5. Conclusions

In this paper, we introduce Sage - the latest BBN speech pro-
cessing platform. The design of Sage aims to satisfy the needs
of both research and production. Through its modular design
and Python interface, Sage can take advantage of many open
source toolkits, each of which has its own strengths. This de-
sign allows researchers to quickly experiment with new tech-
nologies, and ultimately reduces the cost of prototyping. With
Sage, we also introduce Godec, which is an all-in-one stream-
ing framework aimed to support various applications. In this pa-
per, we also show how Sage can combine different open source
recipes to create a better system. To demonstrate Sage’s ca-
pability as a production system, we built a high performance
English system and showed that it can run in real-time with a
modest amount of memory consumption.
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