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ABSTRACT

Designing good normalisation to counter the effect of environmen-
tal distortions is one of the major challenges for automatic speech
recognition (ASR). The Vector Taylor series (VTS) method is a pow-
erful and mathematically well principled technique that can be ap-
plied to both the feature and model domains to compensate for both
additive and convolutional noises. One of the limitations of this
approach, however, is that it is tied to MFCC (and log-filterbank)
features and does not extend to other representations such as PLP,
PNCC and phase-based front-ends that use power transformation
rather than log compression. This paper aims at broadening the
scope of the VTS method by deriving a new formulation that as-
sumes a power transformation is used as the non-linearity during
feature extraction. It is shown that the conventional VTS, in the log
domain, is a special case of the new extended framework. In ad-
dition, the new formulation introduces one more degree of freedom
which makes it possible to tune the algorithm to better fit the data
to the statistical requirements of the ASR back-end. Compared with
MFCC and conventional VTS, the proposed approach provides upto
12.2% and 2.0% absolute performance improvements on average, in
Aurora-4 tasks, respectively.
Index Terms: robust speech recognition, feature extraction, noise
compensation, Vector Taylor Series, power transformation

1. INTRODUCTION

Automatic speech recognition (ASR) in clean/matched acoustical
environments has become a less challenging problem. However,
once the signal gets corrupted by noise ASR performance starts to
degrade with a rate that depends on the type and level of the distur-
bance. Both the recognition front-end and back-end can be modi-
fied in order to mitigate the sensitivity of the system to the environ-
mental distortions. Three main strategies may be adopted in deal-
ing with this issue [1, 2]. First, the signal may be passed through
a pre-processing enhancement stage prior to being supplied to the
parametrisation block. Second, the feature extraction techniques can
be modified to produce features that are more robust against the dis-
tortions induced by noise [3–6]. A third solution is modification of
the back-end to increase its ability to cope with noise, either through
model compensation/adaptation or by using the noise data during
the training phase (multi-style training). One of the most successful
approaches to robust speech recognition is the vector Taylor series
(VTS) method [7]. In this approach, Taylor series expansion is em-
ployed to linearise the non-linear relationship between the clean and
noisy representations. This method has been studied from several
different perspectives [8–11] and can produce state-of-the-art per-
formance improvements.

However, the VTS method is not flexible in terms of the features

it can enhance. Specifically, it can only be used for MFCC or log
filterbank energies (FBE) and can not be directly applied to repre-
sentations which – instead of log compression – apply a power trans-
formation to the FBEs. Examples of such features are generalised-
MFCC [12], PLP [3], PNCC [5] and phase-based features [4,13–18].
As will be illustrated in Section 3, substituting the log function with
the power transformation has a significant effect on the statistical
properties of these features and on their performance, particularly in
noisy conditions. As such by combining VTS and power transfor-
mations a more flexible framework can be created.

In this paper, we develop a novel formulation for VTS assuming
that a power transformation is employed instead of log compression.
This expands the applicability of the VTS, increases the controlla-
bility of the compensation process and, performance-wise, it will be
shown that it leads to a better speech recognition results.

The rest of this paper is organized as follows. In Section 2
the conventional VTS is reviewed. Section 3 contains the motiva-
tions and formulation of the new approach called generalised VTS
(gVTS). Section 4 includes experimental results as well as discus-
sion and section 5 concludes the paper.

2. REVIEW OF VTS

2.1. Signal contamination with noise

A typical acoustic environment can be modelled as follows

Y [k] = X[k] |H(k)|2 +W [k], (1)

where index k,X[k], |H[k]|,W [k] and Y [k] denote the discrete fre-
quency, power spectrum (PS) of the clean signal, frequency response
of the linear channel, PS of noise and PS of the noisy observation,
respectively. For simplification, it is assumed that there is no channel
noise. Applying the logarithm to both sides of (1) yields

log{Y [k]} = log{X[k]}+ log{1 +
W [k]

X[k]
}

Ỹ [k] = X̃[k] + log{1 + eW̃ [k]−X̃[k]}︸ ︷︷ ︸
G(W̃ ,X̃)

(2)

where log{Z[k]} = Z̃[k]. Taking the discrete cosine transform
(DCT) results in

ỹ[q] = x̃[q] + C log{1 + eC
−1
(
w̃[q]−x̃[q]

)
}︸ ︷︷ ︸

g(w̃,x̃)

. (3)

where C and C−1 denote the DCT and inverse DCT matrices, re-
spectively, and q, x̃, w̃, and ỹ are quefrency, (real) cepstrums of the
clean data, noise and noisy observation, respectively. As seen in (2)
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Fig. 1. Elements of the compensation workflow.

and (3), in both log and cepstral domains the noisy observation con-
sists of two components, namely the clean part and an additive term.
The latter is a non-linear function of the signal-to-noise ratio (SNR)
and by SNR reduction, its influence increases. It may be thought
of as a distortion function, G(W̃ , X̃) or g(w̃, x̃), depending on the
domain. The non-linearity of this function complicates estimation of
the statistics of noisy observations given a model for clean speech.

2.2. Compensation

Fig. 1 depicts the elements of the compensation workflow. As seen,
it is comprised of four parts, namely, the clean model, noise model,
estimation criteria and the compensation process. For modelling the
distributions of the clean (x) and noise (w) data, usually a GMM
with M components and a single Gaussian are used, respectively,{

x ∼
∑M
m=1 px(m) N (x;µxm,Σ

x
m)

w ∼ N (w;µw,Σw),
(4)

where px(m), µxm and Σxm denote the component weight, mean vec-
tor and (diagonal) covariance matrix of the mth Gaussian of the
clean feature model and µw and Σw are the mean vector and covari-
ance matrix of the noise, respectively. The models of noise and clean
speech data could be learned either in the frequency domain (from
log− FBEs) or in the cepstrum domain (from the DCT of the log-
FBEs). Since the covariance matrices are assumed to be diagonal,
modelling in the cepstral domain is more suitable due to decorrela-
tion effect of the DCT.

For estimating the clean features from the noisy observations,
minimum mean square error (MMSE) is used as estimation criterion

x̂MMSE = E [x|y] =

∫
x p(x|y)dx (5)

where E denotes the expected value. In the log (frequency) domain

ˆ̃XMMSE =

∫ (
Ỹ −G(W̃ , X̃)

)
p(X̃|Ỹ )dX̃

= Ỹ −
M∑
m=1

p(m|Ỹ ) G(µW̃ , µX̃m), (6)

and in the cepstrum (quefrency) domain

ˆ̃xMMSE =

∫ (
ỹ − g(w̃, x̃)

)
p(x̃|ỹ)dx̃

= ỹ −
M∑
m=1

p(m|ỹ) g(µw̃, µx̃m). (7)

In order to compute the x̂MMSE based on (5) 1, the posterior
probabilities (p(m|y)) should be estimated. In this case, it is as-
sumed that the noisy features also follow a GMM model with the
same number of Gaussians, namely M . Using Bayes’ rule

p(m|y) =
py(m) p(y|m)

p(y)
=

py(m) N (y;µym,Σ
y
m)∑M

m′=1 py(m′) N (y;µym′ ,Σ
y
m′)

(8)

The problem of finding p(m|y) is translated into that of finding
py(m), µym and Σym. Usually it is assumed that x and y are jointly
Gaussian within each mixture component and that

py(m) ≈ px(m). (9)

For computing µym and Σym, a relationship (preferably linear)
between x and y is required that allows the statistics of y to be com-
puted given noise and clean models. At this point, first-order VTS is
used for linearising the relation between vectors x and y around the
point (w0,x0)

y ≈ y(w0,x0) + A (x− x0) + B (w −w0) (10)

where A and B matrices are defined as follows

Ai,j =
∂yi
∂xj

∣∣∣∣∣
(w0,x0)

, Bi,j =
∂yi
∂wj

∣∣∣∣∣
(w0,x0)

. (11)

Depending on the domain chosen for modelling/compensation

A =

{
∂Ỹi
∂X̃j

= diag
[

1

1+e(w−x)

]
∂ỹi
∂x̃j

= C diag
[
1 + exp(C−1(w̃ − x̃))

]
C−1

(12)

where diag
[
.
]

is the operation of generating a diagonal matrix from
a vector. B in either domains equals

B = I −A. (13)

As such, depending on the domain chosen for modelling (and com-
pensation), µym and Σym can be calculated as follows

log-FBE⇒

{
µỸm ≈ µX̃

m +G(µW̃ , µX̃m)

ΣỸm ≈ (AΣX̃mA
T +BΣW̃BT ) � I

(14)

Cepstrum⇒

{
µỹm ≈ µx̃

m + g(µw̃, µx̃m)

Σỹm ≈ (AΣx̃mA
T +BΣw̃BT ) � I,

(15)

where I is the Identity matrix and � denotes element-wise
(Hadamard) multiplication aiming at diagonalising the covariance
matrix for computational convenience.

3. GENERALISED VTS

3.1. Generalised Nonlinearity

Replacing the log function with the generalised logarithmic function
was shown to have a significant effect on the WER [12]. To the
best of our knowledge, the first use of this nonlinearity in speech
processing dates back to 1984 [19] in which it was suggested as an
extension to spectral root deconvolution system (SRDS) proposed in
[20]. In parallel, in the statistics literature it was known from 1964 as

1When the domain is not explicitly mentioned, (e.g. x, instead of X̃[k]
or x̃[q]) it means that the argument holds for both domains.
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the Box-Cox Transformation (BCT) [21]. BCT itself was proposed
as a complementary approach to the Tukey Ladder of Powers [22] for
enhancing the linearity, normality and homoscedasticity (variance
stabilisation) of the data. In our work, we refer to the generalised
logarithmic function or BCT as the generalised non-linearity (GN)
and it is defined as follows{

GN(x; γ) = 1
γ

(xγ − 1), x > 0 γ 6= 0

limγ→0 GN(x; γ) = log(x)
(16)

where γ is the parameter of this transformation.
Table 1 shows the effect of substituting the log in MFCC with

GN for different values of γ. It is called γ-MFCC and as seen, us-
ing GN instead of log has a noticeable effect on the performance. If
the γ parameter is tuned correctly ( 0.075), it provides notably bet-
ter results without increasing the computational complexity of the
parametrisation process. This improvement can be attributed to the
impact of the transformation on the distribution of the FBEs.

To demonstrate this point, FBEs of 2000 signals from Aurora-
2 clean data were pooled and the histogram of each sub-band was
plotted. Fig. 2 shows the average of the histograms. As can be ob-
served, γ has a clear effect on the distribution of the features fed into
the DCT block in the MFCC parametrisation process. This, in turn,
affects how well the back-end model (HMM/GMM) fits the data. It
should be noted that −1 and γ may be removed from the numerator
and denominator of Eq. (16) without loss of generality since they do
not affect the discriminability of the features, as they are identical for
all classes. As such the GN is equivalent to a power transformation.

Table 1. Average (0-20 dB) accuracy (%) for Aurora-2. Feature
vector size is 39: static, log-energy, augmented by ∆ and ∆-∆.

Feature γ TestSet A TestSet B TestSet C

MFCC log ↔ 0 66.2 71.4 64.9

γ-MFCC 0.01 68.0 72.2 69.7
γ-MFCC 0.05 74.5 76.7 76.0
γ-MFCC 0.075 75.4 76.2 76.9
γ-MFCC 0.1 73.3 74.3 74.5
γ-MFCC 0.15 70.0 71.4 68.8
γ-MFCC 0.2 67.2 69.3 63.2

Fig. 2. Effect of γ on the histogram (distribution) of the FBEs.

3.2. Formulation of gVTS

For simplicity, the linear channel effect is removed (we return to this
point later). Applying GN to both sides of (1) yields

Y γ [k] = Xγ [k]
(

1 + (
W γ [k]

Xγ [k]

) 1
γ )γ (17)

Let
X̆[k] = Xγ [k]

W̆ [k] = W γ [k]

Y̆ [k] = Y γ [k]


V̆ [k] = ( W̆ [k]

X̆[k]
)

1
γ

G(W̆ , X̆) = (1 + V̆ )γ

Y [k] = X̆[k]G(W̆ [k], X̆[k])


x̆ = C X̆

w̆ = C W̆

y̆ = C Y̆

(18)

where bold letters (both lower-case and upper-case) denote vectors.
The first difference from VTS is that the distortion function

g(., .) cannot be expressed explicitly in the quefrency domain as was
done in (3)

y̆[i] =

d∑
k=1

Cik Y̆ [k] =

d∑
k=1

CikX̆[k]G( ˘W [k], ˘X[k]), (19)

where d indicates the dimension of vectors in the frequency domain
2. It is due to the loss of the additive property that the log func-
tion provides and the fact that the DCT of the multiplication of two
sequences is not equal to the convolution of the DCTs.

This could be costly performance-wise because as explained in
Section 2.2, modelling in the cepstrum domain better satisfies the
assumptions made by the model. On the plus side, one of the effects
of the GN is enhancing the Normality of the features. Therefore,
the compatibility between the transformed data and such models im-
proves. This allows for reaching a high level of fit with a fewer
Gaussians in the mixture.

The next step is estimation of the clean feature using MMSE. In
the frequency domain

X̆MMSE =

∫
X̆ p(X̆|Y̆ ) dX̆ =

∫
Y̆

G(W̆ , X̆)
p(X̆|Y̆ )dx

= Y̆

M∑
m=1

p(m|Y̆ )
1

G(µW̆ , µX̆m)
. (20)

As with VTS, it is assumed that the distribution of y̆ is a GMM
with M Gaussians and diagonal covariance matrix and components
weight are computed by (9). Following the same line, we arrive at{

µY̆m ≈ µX̆mG(µW̆ , µX̆m)

ΣY̆m ≈ (AΣX̆mA
T +BΣW̆mB

T ) � I.
(21)

By some algebraic manipulation, it can be shown that

Ai,j =
∂Y̆ [i]

∂X̆[j]
=

{
(1 + V̆ [i])γ−1 , i = j

0 , i 6= j
(22)

which in matrix form would be

A = diag
[
(1 + V̆)γ−1]. (23)

Similarly B equals

B = diag
[
(
1 + V̆

V̆
)γ−1]. (24)

As mentioned, modelling in the cepstral domain results in a bet-
ter fit and potentially higher recognition rates. So, it is advantageous
to develop the compensation formula also in the quefrency domain

2In fact, number of filters of the filterbank, e.g. 23.
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3. As mentioned earlier, the distortion function cannot be directly
expressed in the cesptrum domain but (20) can be rewritten:

x̆MMSE = (C−1y̆)

M∑
m=1

p(m|C−1y̆)
1

G(C−1µw̆, C−1µx̆m)
.

(25)
The only missing element in Equation (25) is p(m|C−1y̆). In this
regard, we first compute p(m|y̆) using modelling in the cepstral do-
main, and then find its relationship to p(m|Y̆). To this end, A and
B can be computed as follows

Ai,j =
∂y̆[i]

∂x̆[j]
=

∂

∂x̆[j]

( d−1∑
k=0

Cik

d−1∑
p=0

C−1
kp x̆p︸ ︷︷ ︸

X̆[k]

(1 + V̆k)γ
)

=

d−1∑
k=0

Cik(1 + V̆k)γC−1
kj Cik − γ(1 + V̆k)γ−1 V̆k

γ x̆k
C−1
kj x̆k

=

d−1∑
k=0

Cik (1 + V̆ [k])γ−1 C−1
kj . (26)

Rewriting (26) in matrix form yields

A = C diag
[
(1 + V̆)γ−1] C−1 (27)

and by some algebraic manipulation

B = C diag
[
(
1 + V̆

V̆
)γ−1] C−1. (28)

Therefore,
py̆(m) ≈ px̆(m)

µy̆m ≈
∑d−1
k=0 Cik

(
C−1
k · µ

x̆
m

)
G(C−1

k · µ
w̆, C−1

k · µ
x̆
m)

Σy̆m ≈ (AΣx̆mA
T +BΣw̆mB

T ) � I,
(29)

where C−1
k indicates the kth row of the C−1 matrix and ′·′ denotes

inner product. Returning to (25), the issue was computing p(m|Y̆)

and so far only p(m|y̆) is available. Since the Y̆ and y̆ are linear
transforms of each other, and y is modelled by a GMM, it can be
shown the components weights, likelihoods and consequently the
posterior probabilities do not change

Y̆ = C−1 y̆⇒

{
pY̆(m) = py̆(m)

p(Y̆|m) = p(y̆|m)
⇒ p(m|Y̆) = p(m|y̆).

(30)

3.3. Linear Channel

If a linear channel had been considered in Equation (17), then the
foregoing algorithm would approximately return X̆[n, k] |H[k]|2γ ,
where n indicates the frame index. Assuming the stationarity of
the channel, one can normalise the channel through geometric mean
normalisation (GMN) as follows

x̆[n, k] =
X̆[n, k] |H[k]|2γ

N

√∏N
n=1 X̆[n, k] |H[k]|2γ

. (31)

3We refer to the DCT (GN(X[k])) as cepstrum, too.

4. EXPERIMENTAL RESULTS

4.1. Parametrisation
The feature vector is 39-dimensional and includes static, delta and
delta-delta temporal derivatives and cepstral mean normalization is
applied. The experiments are carried out on Aurora-4 [24] which
is a medium vocabulary task based on Wall Street Journal (WSJ0)
corpus. HMMs were trained from clean data (≈ 14 hours) with 16
components per mixture using maximum likelihood estimation. All
acoustic models were standard phonetically state-clustered triphones
(≈ 2100 states) which were trained from scratch using a standard
HTK regime [25]. Decoding was performed with standard 5k-word
WSJ0 bigram language model. Clean model for VTS were trained
using standard EM with 6 iterations. Noise model was estimated
using the first and last 20 frames. The evaluation set of Aurora-4
consists of 14 test sets which can be grouped into 4 subsets: clean,
noisy, clean with channel distortion, noisy with channel distortion,
which will be referred to as A, B, C, and D, respectively.

Table 2. Word error rates (WER) for Aurora-4. Ave=A+6B+C+6D
14

Feature γ A B C D Ave.∗

MFCC log ↔ 0 6.8 33.4 23.8 50.2 38.0
γ-MFCC 0.05 7.3 25.4 23.9 42.9 31.5
γ-MFCC 0.075 7.6 23.7 24.8 41.6 30.3
γ-MFCC 0.10 8.3 22.3 25.3 40.1 29.1
VTS-log log 6.8 21.9 22.1 38.9 28.1
VTS-cep log 6.7 21.6 21.7 37.5 27.4
gVTS-log 0.075 6.9 19.4 23.7 37.7 26.6
gVTS-cep 0.075 7.1 19.6 24.9 37.1 26.6
gVTS-log-GMN 0.075 7.0 19.9 21.6 36.5 26.2
gVTS-cep-GMN 0.075 6.8 19.3 21.4 36.0 25.7
gVTS-log-GMN 0.05 6.5 19.8 20.4 36.0 25.8
gVTS-cep-GMN 0.05 6.5 19.9 20.6 36.1 25.9
gVTS-log-GMN 0.1 7.3 19.2 21.3 36.6 26.0
gVTS-cep-GMN 0.1 7.4 18.9 21.3 35.8 25.5

4.2. Discussion
Table 2 shows that the proposed generalised VTS yields higher per-
formance than VTS on average. It should be noted that VTS is itself
a powerful method and its recognition performance is difficult to
improve without using a more complex modelling in the back-end.
Applying GMN is helpful in removing the effect of channel noise as
explain in Section 3.3. As seen, it is specially influential in case of
C and D test sets in which the signals are contaminated with channel
noise. Another point that may be deducted from Table 2 is that the
optimum value for γ depends on the SNR. For clean data, the lower
the γ, the better the WER. On the other hand, by SNR reduction
larger values for this parameter returns better results. Based on Ta-
ble 1 and Table 2, 0.05-0.1 is an optimum range for this parameter.

5. CONCLUSIONS

A novel formulation for VTS has been presented that introduces the
use of power transformation (or so-called generalised logarithmic
function) instead of the logarithm in the feature extraction process.
The advantages of this modification was discussed and demonstrated
from both statistical and ASR performance points of view. More-
over, the proposed formulation, expands the potential of VTS ap-
proach by enabling it to be applied to a wider range of features, in-
cluding PLP, PNCC and phase-based representations. This opens up
an ample opportunities for future research.
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