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Abstract
Singing voice synthesis techniques have been proposed based
on a hidden Markov model (HMM). In these approaches, the
spectrum, excitation, and duration of singing voices are simul-
taneously modeled with context-dependent HMMs and wave-
forms are generated from the HMMs themselves. However, the
quality of the synthesized singing voices still has not reached
that of natural singing voices. Deep neural networks (DNNs)
have largely improved on conventional approaches in various
research areas including speech recognition, image recognition,
speech synthesis, etc. The DNN-based text-to-speech (TTS)
synthesis can synthesize high quality speech. In the DNN-based
TTS system, a DNN is trained to represent the mapping function
from contextual features to acoustic features, which are mod-
eled by decision tree-clustered context dependent HMMs in the
HMM-based TTS system. In this paper, we propose singing
voice synthesis based on a DNN and evaluate its effectiveness.
The relationship between the musical score and its acoustic fea-
tures is modeled in frames by a DNN. For the sparseness of
pitch context in a database, a musical-note-level pitch normal-
ization and linear-interpolation techniques are used to prepare
the excitation features. Subjective experimental results show
that the DNN-based system outperformed the HMM-based sys-
tem in terms of naturalness.
Index Terms: Singing voice synthesis, Neural network, DNN,
Acoustic model

1. Introduction
Singing voice synthesis enables computers to “sing” any song.
It has become especially popular in Japan since singing voice
synthesis software Vocaloid [1] was released. There has also
been a growing demand for more flexible systems that can sing
songs with various voices. One approach to synthesize singing
voices is hidden Markov model (HMM)-based singing voice
synthesis [2, 3]. In this approach, the spectrum, excitation, and
duration of the singing voices are simultaneously modeled by
HMMs and singing voice parameter trajectories are generated
from the HMMs by using a speech parameter generation al-
gorithm [4]. However, the quality of the synthesized singing
voices still has not reached that of natural singing voices.

Deep neural networks (DNNs) have largely improved on
conventional approaches in various research areas, e.g., speech
recognition [5], image recognition [6], and speech synthesis
[7, 8, 9]. In a DNN-based text-to-speech (TTS) synthesis sys-
tem, a single DNN is trained to represent a mapping function
from linguistic features to acoustic features that is modeled
by decision tree-clustered context dependent HMMs in HMM-
based TTS systems. The DNN-based TTS synthesis can syn-
thesize high quality and intelligible speech, and several studies
have reported the performance of DNN-based methods [7, 8, 9].
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Figure 1: Overview of the HMM-based singing voice synthesis
system.

In this paper, we propose singing voice synthesis based on
DNNs and evaluate its effectiveness. In the proposed DNN-
based singing voice synthesis, a DNN represents a mapping
function from linguistic and musical-score features to acoustic
features. Singing voice synthesis considers a larger number of
contextual factors than standard TTS synthesis. Therefore, the
strong mapping ability of DNNs is expected to largely improve
singing voice quality. The reproducibility of each acoustic fea-
ture strongly depends on the training data because the DNN-
based singing voice synthesis is a corpus-based approach. As
for the pitch feature, which is one of the most important fea-
tures in singing voice synthesis, it is difficult to generate a de-
sirable F0 contour that closely follows the notes when the pitch
contexts of the training data have poor coverage. This is a se-
rious problem in singing voice synthesis systems. Therefore, a
musical-note-level pitch normalization and linear-interpolation
for both musical notes and extracted F0 values for DNN-based
singing voice synthesis are proposed to address the sparseness
problem of pitch in a database.

This paper is organized as follows. Section 2 describes the
HMM-based singing voice synthesis framework. Section 3 de-
scribes the DNN-based singing voice synthesis framework. Ex-
periments are presented in Section 4. Concluding remarks are
shown in Section 5.

2. HMM-based singing voice synthesis
system

HMM-based singing voice synthesis is quite similar to HMM-
based TTS synthesis [10, 11]. Figure 1 illustrates an overview
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of the HMM-based singing voice synthesis system [2, 3].
This approach consists of training and synthesis parts. In the
training part, spectrum and excitation parameters (e.g. mel-
cepstral coefficients and log F0) are extracted from a singing
voice database and then modeled by context-dependent HMMs.
Context-dependent models of state durations are also esti-
mated simultaneously [12]. The amount of available train-
ing data is normally not sufficient to robustly estimate all
context-dependent HMMs because there is rarely enough data
to cover all the context combinations. To address these prob-
lems, top-down decision-tree-based context clustering is widely
used [13]. In this technique, the states of the context-dependent
HMMs are grouped into “clusters” and the distribution param-
eters within each cluster are shared. HMMs are assigned to
clusters by examining the context combination of each HMM
through a binary decision tree, where one context-related binary
question is associated with each non-terminal node. The deci-
sion tree is constructed by sequentially selecting the questions
that yield the largest log likelihood gain of the training data.
By using context-related questions and state parameter sharing,
the unseen contexts and data sparsity problems are effectively
addressed.

In the synthesis part, an arbitrarily given musical score
including the lyrics to be synthesized is first converted into
a context-dependent label sequence. Next, a state sequence
corresponding to the song is constructed by concatenating the
context-dependent HMMs in accordance with the label se-
quence. The state durations of the song HMMs are then deter-
mined by the state duration models. Finally, the speech param-
eters (spectrum and excitation) are generated from the HMMs
by using a speech parameter generation algorithm [4], and a
singing voice is synthesized from the generated singing voice
parameters by using a vocoder.

3. DNN-based singing voice synthesis
system

An overview of the proposed framework based on a DNN is
shown in Fig. 2. In DNN-based singing voice synthesis, deci-
sion tree-clustered context dependent HMMs are replaced by a
DNN. In the training part, a given musical score is first con-
verted into a sequence of input features for the DNN. The input
features consist of binary and numeric values representing lin-
guistic contexts (e.g. the current phoneme identity, the number
of phonemes in the current syllable, and durations of the current
phoneme) and musical contexts (e.g. the key of the current mea-
sure and the absolute pitch of the current musical note). Output
features of a DNN consist of spectral and excitation parameters
and their dynamic features [14]. The input and output features
are time-aligned frame-by-frame by well-trained HMMs. The
weights of the DNN can be trained using pairs of the input and
output features extracted from training data.

The quality of the synthesized singing voices strongly de-
pends on training data because DNN-based singing voice syn-
thesis systems are “corpus-based.” Therefore, DNNs corre-
sponding to contextual factors that rarely appear in training data
cannot be well-trained. Although databases including various
contextual factors should be used in DNN-based singing voice
synthesis systems, it is almost impossible to cover all possible
contextual factors because singing voices involve a huge num-
ber of them, e.g., keys, lyrics, dynamics, note positions, dura-
tions, and pitch. Pitch should be properly covered because it
greatly affects the subjective quality of the synthesized singing
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Figure 2: Singing voice synthesis framework based on DNN.
Note that phoneme alignments are given by well-trained HMMs
in the training/synthesis part.

voices. To address this problem, pitch adaptive training (PAT)
has been proposed in HMM-based singing voice synthesis sys-
tems [15]. In PAT, the differences between log F0 sequences
extracted from waveforms and the pitch of musical notes can be
modeled. Therefore, PAT enables singing voices including any
pitch to be generated. However, PAT is difficult to directly apply
to DNN-based singing voice synthesis systems. Therefore, we
propose a musical-note-level pitch normalization technique for
DNN-based singing voice synthesis. In the proposed pitch nor-
malization technique, the differences between log F0 extracted
from waveforms and one calculated from musical notes are used
as training data. By modeling the difference in log F0 with a
DNN, DNN-based singing voice synthesis systems can generate
variable singing voices including any pitch. However, modeling
differences in log F0 presents a challenge: how to model log F0

of singing voices including unvoiced frames and musical scores
including musical rests. To appropriately define the differences
in log F0 in such unvoiced frames and musical rests, we intro-
duce the zero-filling and linear interpolation techniques. Fig-
ures 3, 4, 5, and 6 illustrate the musical-note-level pitch nor-
malization with the combinations of the linear-interpolation for
the unvoiced frames of the singing voice and the musical rest on
the musical score. Blue-colored regions of figures mean that it
can not model the difference without linear interpolation. Fig-
ure 3 illustrates musical-note-level pitch normalization without
interpolation. In this approach, the differences in the voiced
frames on musical rests and unvoiced frames on musical notes
are filled with zero. Therefore, log F0 values in these frames
cannot be effectively used. The linear-interpolation of log F0

values can avoid the zero-filling (Figures 4, 5, and 6).

In the same fashion as the HMM-based approach, by setting
the predicted output features from the DNN as mean vectors and
pre-computed variances of the output features from all training
data as covariance matrices, the speech parameter generation
algorithm [4] can generate smooth trajectories of singing voice
parameter features that satisfy both the statistics of static and
dynamic features. Finally, a singing voice is synthesized di-
rectly from the generated parameters by using a vocoder. Note
that the parameter generation and waveform synthesis modules
of the DNN-based system can be shared with the HMM-based
one, i.e. only the mapping module from context-dependent la-
bels to statistics needs to be replaced.
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Figure 3: Musical-note-level pitch normalization without inter-
polation.
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Figure 4: Musical-note-level pitch normalization with linear-
interpolation of the pitch of the musical note.
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Figure 5: Musical-note-level pitch normalization with linear-
interpolation of the pitch of the singing voice.
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Figure 6: Musical-note-level pitch normalization with linear-
interpolation of the pitch of both the musical note and the
singing voice.

4. Experiments
4.1. Experimental conditions

To evaluate the effectiveness of the proposed method, objective
and subjective experiments were conducted. A database con-
sisting of 70 Japanese children’s songs sung by a female singer
was used. Sixty songs were used for training data, and the other
10 songs were used for evaluation. Singing voice signals were
sampled at a rate of 48 kHz, and the number of quantization
bits was 16. The acoustic feature vectors consisted of spec-
trum and excitation parameters. The spectrum parameter vec-
tors consisted of 0th-49th STRAIGHT [16] mel-cepstral coef-
ficients, their delta, and delta-delta coefficients. The excitation
parameter vectors consisted of log F0, its delta, and delta-delta.

For the baseline system based on HMMs, seven-state (in-
cluding the beginning and ending null states), left-to-right, no-
skip hidden semi-Markov models (HSMMs) [17] were used.
To model log F0 sequences consisting of voiced and unvoiced
observations, a multi-space probability distribution (MSD) was
used [18]. PAT was applied to cover possible pitch. The number
of questions for the decision tree-based context clustering was
11440.

For the proposed system based on the DNN, the input fea-
tures including 561 binary features for categorical contexts (e.g.
the current phoneme identity, the key of the current measure)
and 86 numerical features for numerical contexts (e.g. the num-
ber of phonemes in the current syllable, the absolute pitch of
the current musical note) were used. In addition to the contexts-
related input features, three numerical features for the position
of the current frame in the current phoneme were used. The in-
put and output features were time-aligned frame-by-frame by
well-trained HMMs. The output features were basically the
same as those used in HMM-based systems. To model log F0

sequences by the DNN, the continuous F0 with explicit voic-
ing modeling approach [19] was used; voiced/unvoiced binary
values were added to output features. The weights of the DNN
were initialized randomly and then optimized to minimize the
mean squared error between the output features of the training
data and predicted values using a minibatch stochastic gradient
descent (SGD)-based back-propagation algorithm. Both input
and output features in the training data for the DNN were nor-
malized; the input features were normalized to be within 0.00–
1.00 on the basis of their minimum and maximum values in
the training data, and the output features were normalized to be
within 0.01–0.99 on the basis of their minimum and maximum
values in the training data. The sigmoid activation function was
used for hidden and output layers.

Singing voice parameters for the evaluation were generated
from the HMMs/DNNs using the speech parameter generation
algorithm [4]. From the generated singing voice parameters,
singing voice waveforms were synthesized using the MLSA fil-
ter [20].

To objectively evaluate the performance of the HMM and
DNN-based systems, mel-cepstral distortion (Mel-cd) [21] and
root mean squared error of log F0 (F0-RMSE) were used. Com-
binations of the number of hidden layers (1, 2, 3, 4, or 5) and
units per layer (128, 256, 512, 1024, or 2048) were decided by
calculating Mel-cd and F0-RMSE for each method.

4.2. Comparison of the pitch interpolation techniques

We compared the combinations of the presence or absence of
linear-interpolation for the unvoiced frame of the singing voice
and the musical rest on the musical score. The number of hidden
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Table 1: Comparison results of linear-interpolation method of
log F0. � represents used linear-interpolation methods.

Song F0 interp � �
Score F0 interp � �

F0-RMSE [logHz] 0.04851 0.04847 0.04777 0.04784

Table 2: Comparative approaches and combinations of the
number of hidden layers and units per layer.

Hidden layers Units per layer

HMM

�������������
DNN (tuned for mgc) 3 1024

DNN (tuned for lf0) 4 1024

Separated DNN
lf0 1 1024

mgc 3 1024

layers and units per layer that showed the smallest F0-RMSE
were 4 and 1024 in all combinations.

Table 1 shows the experimental results. It can be seen
from the table that the musical-note-level pitch normalization
with linear-interpolation of log F0 sequences extracted from the
singing voice achieved the lowest F0-RMSE. The results also
show that the linear-interpolation of log F0 sequences extracted
from the singing voices more strongly affects F0-RMSE than
the linear-interpolation of log F0 sequences calculated from the
musical note. That is, the difference between linear-interpolated
log F0 sequences and musical notes appropriately represents the
singer’s characteristics and the normalization using such differ-
ence is effective to generate songs that are not included in the
pitch range of the training data.

4.3. Objective experiments

To compare the performance of the DNN-based systems with
the HMM-based ones, objective experiments were conducted.
Table 2 shows comparative systems and combinations of the
number of hidden layers and units per layer. HMM is a con-
ventional HMM-based singing voice synthesis system. DNN
(tuned for mgc) is a method that uses the combination of
the number of hidden layers and units per layer that indicated
the smallest Mel-cd. DNN (tuned for lf0) is a method that
uses the combination of the number of hidden layers and units
per layer that indicated the smallest F0-RMSE. Separated
DNN is a method by which the spectrum DNN and the ex-
citation DNN were trained individually. In all the DNN-based
systems, the musical-note-level normalization that achieved the
lowest F0-RMSE in section 4.2 was applied to the output fea-
tures of the excitation.

Table 3 shows the experimental results for Mel-cd and F0-
RMSE. The results show that the DNN-based systems consis-
tently outperformed the HMM-based ones in terms of Mel-cd
but obtained worse results in terms of log F0 prediction.

4.4. Subjective experiments

To evaluate the naturalness of synthesized singing voices, a sub-
jective listening test was conducted. In this subjective evalua-
tion, the four systems compared in section 4.3 were evaluated.
Ten Japanese subjects were asked to evaluate the naturalness of
the synthesized singing voices on a mean opinion score (MOS)

Table 3: Objective evaluation results: comparison of HMM-
based and DNN-based singing voice synthesis.

HMM
DNN DNN

Separated
DNN

(tuned (tuned
for mgc) for lf0)

Mel-cd [dB] 5.162 5.027 5.054 4.997
F0-RMSE [logHz] 0.04423 0.04856 0.04777 0.04729
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Figure 7: Subjective evaluation results: comparison of HMM-
based and DNN-based singing voice synthesis.

on a scale from 1 (poor) to 5 (good). The subjects used head-
phones. Each subject was presented 20 musical phrases ran-
domly selected from 10 songs.

Figure 7 shows the experimental results. This figure shows
that all the DNN-based systems achieved significantly higher
MOS than the HMM-based ones although there was no sig-
nificant difference among the three DNN-based systems. The
better prediction of mel-cepstral coefficients by the DNN-based
systems seems to have contributed to their higher MOS. This re-
sult clearly shows the effectiveness of the proposed DNN-based
singing voice synthesis.

5. Conclusions

DNN based singing voice synthesis was proposed and its ef-
fectiveness was evaluated in this paper. The relationship be-
tween musical scores and their acoustic features was modeled
by a DNN in each frame. The objective experimental results
show that the difference between the interpolated log F0 se-
quences extracted from the waveform and the non-interpolated
pitch of the musical note was effective for the excitation features
of the DNN-based systems. Furthermore, the DNN-based sys-
tems outperformed the HMM-based systems in the subjective
listening test. Future work will include the comparison with
other architecture such as LSTM-RNN.
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