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Abstract
Speech intelligibility in reverberant environments decreases
due to overlap-masking. Unlike additive noise, the masking
signal is not independent from the information bearing signal.
A mathematical framework for intelligibility-enhancing signal
modification prior to presentation in reverberant environments
is presented in this paper. The optimal solution generalizes
steady state suppression and adjusts the short-term signal
power as a function of late reverberation power and signal
importance. The signal modification operates in a full-band
setting and preserves the time scale of the unmodified signal.
Gain smoothing based on an adaptive rate-of-change constraint
reduces processing artifacts and enhances performance. Sub-
jective validation shows that the proposed method effectively
reduces the impact of overlap-masking. Speech intelligibility
at a reverberation time of 1.8 s was improved significantly
compared to unmodified and steady-state-suppressed speech.

Index Terms: speech intelligibility, reverberation, speech mod-
ification, power dynamics recovery

1. Introduction
The overlap-masking effect, i.e., the simultaneous observation
of a large number of delayed and attenuated copies of an acous-
tic signal, degrades the intelligibility of speech in reverberant
environments [1]. Reverberation consists of early reflections
(ER) arriving within a small window after the direct (or shortest
propagation path) sound and late reverberation (LR) [2]. While
ER are distinct and depend on the hall geometry and the posi-
tions of the speaker and the listener, LR is diffuse due to the
multitude of times each signal copy has been reflected. LR has
been identified as the primary cause of intelligibility degrada-
tion under reverberation [1, 3].

A number of intelligibility enhancing speech modifications
for reverberation have been proposed. Inverse filtering aims to
cancel the reverberation effect but lacks spatial robustness and
suffers from limitations related to the invertibility of the room
impulse response (RIR) [4, 5]. Modulation enhancement to off-
set the loss of modulation depth caused by reverberation is pro-
posed in [6]. Based on performance figures, practical applica-
tion of this methodology requires further improvements.

Reducing the impact of overlap-masking on transient por-
tions of the signal by steady state suppression (SSS) is dis-
cussed, e.g., in [7, 8, 9]. The approach is motivated by the
importance of sound transitions. Evidence of the method effec-
tiveness is primarily based on syllable recognition tasks [7, 10].
Intelligibility degradation is reported in [9, 11]. The inconsis-
tent performance is likely caused by insufficient adaptation to
the speech statistics and the environment, as well as distortion

introduced by rapid gain fluctuations.
Local and global time-scale modifications are significantly

more effective in recovering speech transients. Zero-padding in
the steady state is proposed in [12] while fixed time-scaling is
evaluated in [13]. These methods do not adapt to the specific
conditions and apply a user-defined modification depth. Use of
fixed-duration pauses without linguistic motivation is consid-
ered in [14, 9]. An approach to using linguistically-motivated
pauses with context-adaptive duration is studied in [15]. The in-
telligibility gain achieved by these methods comes at the cost of
a reduced information transfer rate. The combination of time-
scale modification and signal power adjustment is likely to at-
tract more attention in the future.

Recent years have seen an increase in interest for
optimization-based methods. Perceptual distortion is mini-
mized for the parameters of a spectral gain modification in
[16, 17]. A speech intelligibility index (SII) [18] based mea-
sure is optimized in [19]. Local SII optimization by spectral
shaping and dynamic range compression is studied in [20]. The
methods listed above address reverberation exclusively in com-
bination with noise while focusing on mild-to-moderate rever-
beration conditions.

In this paper we revisit the idea of suppressing signal power
in the steady state [7] to reduce masking of sound transitions.
A mathematical framework is used, where by optimization a
short-term full-band power correction is obtained. The solution
depends on the LR power and the signal importance. An ex-
tended theoretical analysis of the methodology is presented in
[21]. Once the locally-optimal gain is computed, it is smoothed
to reduce rapid gain fluctuations. The proposed approach gen-
eralizes steady state suppression (SSS) [7] and effectively im-
proves intelligibility for meaningful sentences. Performance is
validated with a listening test.

The remainder of this paper is organized as follows. The-
ory is presented in Section 2. System design is discussed in
Section 3. Experimental results are given in Section 4 followed
by conclusions.

2. Theoretical foundations
The modification of a speech-in-noise distortion criterion for
the specifics of the reverberation problem is presented in Sec-
tion 2.1. Calibration of the optimal input-output (IO) signal
power mapping with respect to LR power is summarized in
Section 2.2. Dependence of the output power on local signal
importance is discussed in Section 2.3.

2.1. Power gain optimization

A distortion criterion quantifying the effect of additive noise on
power dynamics was proposed in [22] and used for intelligibil-
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ity enhancing speech modification. Raising the LR (noise in
[22]) power, in the gain penalty of the criterion, to an exponent
larger than one introduces a new functionality. The distortion
criterion, using power two for the exponent, is given by:

η =

β∫
α

(
1

x

(
y + l − xdy

dx

)2

+ λl2
y

x

)
fX (x|b) dx, (1)

where x, y and l are the instantaneous powers of unmodified
speech, modified speech and LR respectively, λ is a Lagrange
multiplier, fX (x|b) is the probability density function of the
Pareto distribution [23] with shape parameter b, and α and β
define the optimal operating range. The first additive term is
a distortion measure and the second is the power gain penalty.
With an increase in l, the penalty gradually outweighs the dis-
tortion, and inverses the modification direction.

Optimizing (1) based on calculus of variations [24], a
closed-form power mapping y (x) is obtained as:

y (x) = c1x+ c2x
b +

l

2b
(lλ− 2b) , (2)

where c1 and c2 are constants. The solution is read-
ily verified to be a minimizer [22, 25]. The bound-
ary conditions used to determine c1 and c2 are:

y (α) = α, (3) y′ (ψ) = ρ, (4)

where y′ = dy
dx

, ρ = ςl, ς ∈ (0, 1) is a small positive
number and ψ → ∞ is a large positive number. Dependence
of the derivative on the LR power l is introduced to ensure
that in the absence of reverberation (y′ (ψ) = 1), the signal
remains unchanged. In the presence of reverberation, ρ → 0
is effectively a constant. c1 and c2 are obtained by solving the
linear system formed by equations (3) and (4).

2.2. IO power map calibration

Practical use of (2) requires that the critical LR power l̃, which
causes an inversion in modification direction, is known in ad-
vance. Facilitated by the choice for the LR power exponent in
(1), we calibrate the mapping such that for λ = λ̃, l = l̃ induces
maximum boosting y = β. Starting from:

y (x = β|λ, l) = β (5)

and grouping all terms along the powers of l, produces a
quadratic form. Solving the single-root condition of this
quadratic form for λ identifies the multiplier λ̃ as:

λ̃ =
b

2 (1− ρ)

βb − αb − (β − α) bψb−1

αbβ − αβb . (6)

The LR power l̃ at which the inversion occurs is the single root
of the quadratic form:

l̃ = b/λ̃. (7)

A family of IO power mappings is shown in Figure 1. The cross-
ing point between the optimal mapping and y = x for x > α
defines the maximum boosting power (MBP). The mapping is
guaranteed to be monotonically increasing on x ∈ (α,ψ) when
y′ (ψ)→ 0 and MBP exceeds α.

The IO mapping is not lower-bounded in general. The
monotonic increase property can be violated for λ = λ̃ given
a sufficiently large l. A particular MBP ν ∈ (α, β] can be

Figure 1: Input-output power mappings for a set of LR power
values and λ = λ̃.

achieved independent of the value of l, l > 0. The multiplier
λν that ensures this behavior is derived by substituting β with
ν in (5) and solving for λ:

λν =
2b

l2
(ρ− 1)

(
αbν − ανb

)
νb − αb − b (ν − α)ψb−1

+
2b

l
. (8)

2.3. Signal importance and optimal gain

We refer to signal importance as an indicator of how non-
stationary the signal is. Full context awareness requires depen-
dence on the degree of signal importance in the IO power map-
ping. This dependence can be introduced through the multiplier
λ. The objective is to permit more boosting (in case of l ≤ l̃)
and less suppression (l > l̃) when the signal is less stationary.
Inversely, less boosting (l ≤ l̃) and stronger suppression (l > l̃)
is targeted when the signal is more stationary.

One approach to achieve the desired functionality is to es-
tablish a monotonic dependence of MBP on the signal impor-
tance, which we denote by ξ. The sigmoid:

q (Θ | s, H, L) =
1− e−sΘ

1 + e−sΘ
(H − L) + L, Θ > 0, (9)

with slope s, is used here to map ξ to an MBP νξ bounded by
L = α and H = β in log domain. The multiplier λνξ that
achieves MBP νξ is identified from (8).

For l ≤ l̃, the effective multiplier:

λ = max
(
λνξ , λ̃

)
(10)

prevents boosting beyond MBP νξ. For l > l̃:

λ = λν̄ (11)

(log (ν̄) = q (λνξ/λ̃ | s, log (νξ) , log (να))) ensures MBP
ν̄ ∈ (α, νξ).

3. System design
An operation diagram of the proposed adaptive gain control
(AGC) system is illustrated in Figure 2. Overlapping frames
are extracted from the input speech signal and labeled accord-
ing to their importance. A late reverberation model predicts LR
power. The optimal output power is computed given the input
power, the LR power and the signal importance. Frame-based
estimates are used to approximate instantaneous power and im-
portance. The output power is smoothed to reduce artifacts.
The short-term signal is scaled, reflecting the target power, and
added to the buffer. Importance estimation, LR modeling and
gain smoothing are summarized below.
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Figure 2: Operation diagram of the proposed system.

3.1. Frame importance estimator

We propose a causal frame importance estimator based on mea-
suring the normalized distance of the Mel frequency cepstral
coefficients (MFCCs) in adjacent frames:

ξi =
‖mi −mi−1‖
‖mi‖+ ‖mi−1‖

, ξi ∈ [0, 1] , (12)

where mi is the MFCC set from frame i. High degree of sim-
ilarity in the feature domain indicates that the signal is station-
ary and translates to low importance. The estimator behavior is
shown in Figure 3.

Time (s)
0.5 1 1.5 2

-1

-0.5

0

0.5

1

Normalized signal
ξ (frame importance)

Figure 3: Active-frame importance estimates. Estimator fluc-
tuation towards the end of the waveform is caused by on/off
switching in the voice activity detector.

3.2. Late reverberation model

Let τ (in seconds) denote the boundary between early reflec-
tions and LR [2], as measured from the arrival of the direct-path
sound. A simple model assuming the exponential decay of LR
power with time and a constant RT60 over frequency is used
here [26]. The LR part of the RIR is modeled as a pulse train
ι [k], which is amplitude modulated by an exponentially decay-
ing function:

h̃ [k] = ι [k] 10
−3 k

RT60fs , (13)

where fs is the sampling rate. The energy of the modulated
pulse train is equalized to the energy of the LR part of RIR cal-
culated from a measurement. The approximate LR waveform l̂
is given by the convolution:

l̂ [k] =

(RT60−τ)fs∑
n=1

h̃ [τfs + n] y [k − τfs − n] . (14)

A sample-based LR power estimate l̂ is computed from l̂.
Given that full-band operation is considered at present, the over-
adjustment of signal power is reduced by working with the LR

power from the spectral range dominated by the speech signal.
A set of non-overlapping frequency bands, linearly-distributed
on a Mel scale, is used for the purpose. The effective LR power
is computed from the bands with the largest contributions that
contain at least 90 % of the speech power.

3.3. Gain smoothing

Rapid gain fluctuation creates discontinuities with negative im-
pact on intelligibility. Limiting the rate of change smooths the
locally-optimal gain without smearing frame importance. The
smoothed gain ǧ is constrained by:

D < ǧi ≤ Ug
φi
i , g2

i = yi/xi (15)

where D and U are constants, and φi may vary depending
on the speech properties. The particular upper limit permits
stronger boosting for low-power signal portions. The effective
rates converge to their limits with ξ:

{ui, di} ≡
{
q

(
ξi |s, Ug

φi
i , 1

)
, q (ξi |s, 1, D)

}
, (16)

where the smooth mapping from (9) was used for convenience.
The smooth signal-domain gain is:

ǧi =

{
min (ui, gi) if gi > 1
max (di, gi) if gi ≤ 1.

(17)

4. Evaluation
Reverberation is simulated using a source-image method gen-
erated RIR [27]. The assumed hall dimensions are 20 ×
30 × 8 m, with speaker and listener locations {10, 5, 3} and
{10, 25, 1.8} m respectively. For convenience, propagation
delay and attenuation are normalized to the direct sound. The
training data used to fit fX (x)), and determine α and β, is a
British English recording of [28] comprising 720 sentences.

Table 1: System parameter values.

Frame duration: 25 ms Frame overlap: 50 %
m: MFCCs orders 1-to-12 τ = 0.05, [2]
α: min frame power (all data) ς = 0.001
β: max frame power (all data) ψ = β4

Pulse density in ι: 4000 s−1 s = 20
D = 0.15 U = 1.15
φi ∈ {1/3, 1/6}
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Figure 4: Signal waveforms for the test sentence from Figure 3
preprocessed for presentation at RT60 = 1.8 s.

Values of the operational parameters from the proposed sys-
tem design are listed in Table 1. In addition, effective LR power
was determined based on a ten-band set-up. The smaller value
for φwas used when the largest speech power contribution came
from the range above 2.6 kHz (band six for computing the ef-
fective LR power). This reduced a high-frequency artifact likely
caused by the flat response of the simple reverb simulator.

Figure 4 shows the output waveforms from the three meth-
ods included in the evaluation for the sentence (”The swan
dive was far short of perfect.”) processed for presentation at
RT60 = 1.8 s. The unmodified signal is denote by NAT. The
reference system is an in-house implementation of [7]. The en-
velope profile for SSS is consistent with, e.g., [13, 29]. The
corresponding reverberant waveforms are shown in Figure 5. In
both figures a > 0 is the same constant.

We observe, from Figure 3 and Figure 4, that low impor-
tance regions undergo gain suppression for both SSS and AGC.
The gain reduction rate is clearly faster for SSS, which causes
audible artifacts. On average, as measured over the 170 sen-
tences from set 39 through to set 55 in [28], both AGC and
SSS reduce signal power by approximately 60 %. This number
is also an indication of a significant reduction in reverberation
power. In the absence of reverberation, the AGC-modifed wave-
form converges to the NAT waveform.

AGC has a low algorithmic delay due to the causality of the
importance estimator. In contrast, SSS [7] uses a look-ahead
window [30]. The method complexity is low, with LR wave-
form computation (eq. (14)) as the most demanding task. Real-
time processing is achieved in Matlab [31] by accounting for the
sparsity of h̃ from eq. (13). Significant decrease in complexity,
considering the particular LR power estimator, can be achieved
by pulse density reduction and pulse train truncation.

A listening test with five native English speakers (average
age 29) was conducted to compare the intelligibility of unmod-
ifed, SSS-modified and AGC-modified speech. The partici-
pants, recruited from the affiliated research facility, did not re-
port any hearing impairments. Modified utterance power was
equalized to facilitate comparison. The material was presented
diotically, in a silent room, using a pair of Audio-technica ATH-
M50x headphones.

−3a
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−3a

3a

0.5 1 1.5 2 2.5

−3a

3a

Time (s)

NAT

SSS

AGC

Figure 5: Processed reverberant waveforms, for the test signals
from Figure 4, at RT60 = 1.8 s.

A preliminary session using sets 39 and 40 from [28] fa-
miliarized the subjects with the task and the test interface. The
test material comprised sets 41 to 55 (150 sentences in total).
Each method was assigned a macro set of five sets. The alloca-
tion of macro-set to system and the system presentation order
were randomly selected for each listener. After hearing a sen-
tence once, the listener was prompted to type its content. A
word recognition rate (WRR) was computed for each sentence
as the ratio of correctly-identified to the total number of key-
words [32]. The average (over macro sets and subjects) recog-
nition rates and standard errors for each method are shown in
Figure 6. Five subjects were sufficient to measure significant
intelligibility gain for AGC over NAT (p < 0.05, Student’s t
test). SSS degrades intelligibility insignificantly compared to
NAT, a result obtained independently, e.g., in [9].

NAT SSS AGC

W
R

R

0.4

0.5

0.6

0.7

0.8

RT
60

 = 1.8 s

Figure 6: Average word recognition rates (WRR).

5. Conclusions
A mathematical framework optimizing the full-band signal gain
as a function of input power, late reverberation power and signal
importance produces a context-aware generalization of steady-
state suppression. Continuous and gradual adaptation combined
with adaptive gain smoothing result in artifact-free processing.
The proposed method achieves significant intelligibility gain
over natural speech and steady-state suppression.
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