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Abstract
The goal of computational speech segregation systems is to au-
tomatically segregate a target speaker from interfering maskers.
Typically, these systems include a feature extraction stage in the
front-end and a classification stage in the back-end. A spectro-
temporal integration strategy can be applied in either the front-
end, using the so-called delta features, or in the back-end, us-
ing a second classifier that exploits the posterior probability of
speech from the first classifier across a spectro-temporal win-
dow. This study systematically analyzes the influence of such
stages on segregation performance, the error distributions and
intelligibility predictions. Results indicated that it could be
problematic to exploit context in the back-end, even though
such a spectro-temporal integration stage improves the segre-
gation performance. Also, the results emphasized the potential
need of a single metric that comprehensively predicts compu-
tational segregation performance and correlates well with intel-
ligibility. The outcome of this study could help to identify the
most effective spectro-temporal integration strategy for compu-
tational segregation systems.
Index Terms: computational speech segregation, binary masks,
supervised learning, spectro-temporal integration.

1. Introduction
Computational speech segregation systems attempt to automat-
ically segregate a target signal from interfering noise. One
frequently-used approach is to construct an ideal binary mask
(IBM) by retaining only those time-frequency (T-F) units that
are target-dominated [1]. Many studies have used the IBM
to segregate a target speech signal from a noisy mixture and
demonstrated large intelligibility improvements [2, 3, 4]. How-
ever, a priori knowledge about the target and interferer is rarely
available in realistic conditions and therefore, the goal of com-
putational speech segregation systems is to obtain an estimated
binary mask (EBM) given the noisy speech. Despite high levels
of interfering noise, speech-dominated T-F units tend to clus-
ter in spectro-temporal regions, forming so-called glimpses, and
the size of these glimpses has been shown to correlate well
with speech intelligibility scores from normal-hearing listen-
ers [5]. Consequently, several studies have tried to explore
spectro-temporal context in computational segregation systems.
One strategy is to exploit context in the front-end by using so-
called delta features [6], which capture feature variations across
time and frequency at the expense of a higher dimensional fea-
ture vector. Alternatively, spectro-temporal context can be ex-
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ploited in the classification back-end by employing a two-layer
segregation stage [7, 8]. Specifically, the posterior probability
of speech presence obtained from a first classifier is learned by
a second classifier across a spectro-temporal window, where the
amount of integration can be controlled by the size of the win-
dow function [8].

To date, the effectiveness of computational segregation sys-
tems and the benefit of spectro-temporal integration strategies
have been primarily evaluated using a technical metric, namely
the H - FA, which quantifies segregation performance by calcu-
lating the difference between the percentage of correctly classi-
fied speech-dominated T-F units (hit rate, H) and the percentage
of incorrectly classified noise-dominated T-F units (false alarm
rate, FA) [6, 7, 8, 9, 10, 11]. However, there is evidence sug-
gesting that speech intelligibility scores are highly dependent
on the distribution of mask errors rather than the overall H - FA
rate [12], and this questions the applicability of the H - FA as
the sole metric to optimize or evaluate computational segrega-
tion systems. The clustering of the speech-dominated T-F units
in glimpses suggests that a certain type of structure is inherently
embedded in the IBM. However, depending on the choice of the
spectro-temporal integration strategy in either the front-end or
the back-end, it might have different consequences on the error
distribution in the EBM.

The goal of the present study is, therefore, to systematically
analyze the influence of spectro-temporal integration strategies
in the front-end and the back-end of a speech segregation sys-
tem using not only the H - FA, but also by considering the dis-
tribution of errors and the impact on predicted speech intelligi-
bility using the short-term objective intelligibility (STOI) met-
ric [13]. In previous studies [6, 7], the same short noise record-
ing has been used for training and testing. In such experimental
setups, a classification-based segregation system can then po-
tentially capture all characteristics of the signals [11]. A second
goal is, therefore, to analyze the potential influence of the noise
duration on each of the spectro-temporal integration strategies.

2. The speech segregation system
The segregation system consisted of a feature extraction front-
end and a classification back-end [14], as shown in Fig. 1. The
target signal was reconstructed by applying the EBM to the sub-
band signals of the noisy speech, as illustrated by the dashed
line. Each processing stage is described in detail in the follow-
ing.

2.1. Feature extraction front-end

The distinct characteristics of speech and noise components
were captured by amplitude modulation spectrogram (AMS)
features [6, 8, 14, 15]. To derive these, the noisy speech was
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Figure 1: Block diagram of the segregation system that shows the main blocks of the feature extraction front-end and the classification
back-end. The dashed line illustrates the reconstruction of the target by applying the EBM to the subband signals of the noisy speech.

sampled at a rate of 16 kHz and decomposed into 31 frequency
channels by a Gammatone filterbank, whose center frequencies
were equally spaced on the equivalent rectangular bandwidth
(ERB) scale between 80 and 7642 Hz. The envelope in each
subband was extracted by half-wave rectification and low-pass
filtering with a cutoff frequency of 1 kHz. Then, each envelope
was normalized by its median that was computed over the en-
tire signal, which was shown to improve the generalization to
unseen acoustic conditions (e.g., signal-to-noise ratios (SNRs)
and room reverberation) [8, 16]. The normalized envelopes
were then processed by a modulation filterbank that consisted
of one first-order low-pass and five band-pass filters with loga-
rithmically spaced center frequencies and a constant Q-factor of
1. The root mean square (RMS) value of each modulation filter
was then calculated across time frames corresponding to 32 ms
with 75 % overlap, resulting in a 6-dimensional feature vector
for each T-F unit A (t, f) = {M1 (t, f) , . . . ,M6 (t, f)}T .

Context was explored in the front-end by appending
delta features across time (∆T ) and frequency (∆F ) [6,
9, 10]. The final feature vector for each individual T-F
unit at time frame t and frequency channel f consisted of
X (t, f) = [A (t, f) ,∆TA (t, f) ,∆FA (t, f)], where:

∆TA (t, f) =

{
A (2, f)−A (1, f) , if t = 1

A (t, f)−A (t− 1, f) , otherwise,
(1)

∆FA (t, f) =

{
A (t, 2)−A (t, 1) , if f = 1

A (t, f)−A (t, f − 1) , otherwise.
(2)

The size of the feature vector including delta features then in-
creased from 6 dimensions to 18 dimensions.

2.2. Classification back-end

The classification back-end consisted of a two-layer segre-
gation stage [8, 14]. In the first layer, a Gaussian mix-
ture model (GMM) classifier was trained to represent the
speech and noise-dominated AMS feature distributions (λ1,f

and λ0,f ) for each subband f . To separate the feature vec-
tor into speech- and noise-dominated T-F units, a local crite-
rion (LC) was applied to the a priori SNR. The GMM classi-
fier output was given as the posterior probability of speech and
noise P (λ1,f |X (t, f)) and P (λ0,f |X (t, f)), respectively.
The second layer consisted of a linear support vector machine
(SVM) classifier [17], which considered the posterior probabil-
ity of speech P (λ1,f |X (t, f)) across a spectro-temporal inte-
gration windowW for each subband [8]:

X̄ (t, f) := {P (λ1,u|X (u, v)) : (u, v) ∈ W (t, f)} . (3)

According to [8], a causal and plus-shaped window functionW
was used here, whereas the window size with respect to time
and frequency was controlled by ∆t and ∆f , respectively.

3. Evaluation
3.1. Stimuli

The speech material was taken from the Danish conversational
language understanding evaluation (CLUE) database [18],
which consists of 70 sentences for training and 180 sentences
for testing. Noisy speech mixtures with an average dura-
tion of 2 s were created by mixing individual sentences with
a stationary (ICRA1) and a fluctuating 6-talker (ICRA7) noise
masker [19]. Both maskers had the same long term average
spectrum (LTAS) as the CLUE corpus. A randomly-selected
noise segment was used for each sentence and the noise seg-
ment started 250 ms before the speech onset and ended 250 ms
after the speech offset.

3.2. Model training

The segregation system was trained for each of the two noise
maskers. To investigate the influence of the noise duration, dif-
ferent models were trained with noise files that were limited to
5, 10, 50 s or the total duration of the noise recording (60 s for
ICRA1 and 600 s for ICRA7). The first layer of the classifica-
tion back-end consisted of a GMM classifier with 16 Gaussian
components and diagonal covariance matrices. The GMM clas-
sifier was trained with the 70 training sentences that were mixed
three times with a randomly-selected noise segment at −5, 0
and 5 dB SNR. The subsequent SVM classifier was trained with
only 10 sentences mixed at−5, 0 and 5 dB SNR. Afterwards, a
re-thresholding procedure was applied [8, 9] using a validation
set of 10 sentences. Both classifiers employed a LC of −5 dB.

3.3. Model evaluation

The segregation system was evaluated with 180 CLUE sen-
tences that were not used during training. Each sentence was
mixed with ICRA1 and ICRA7 noises at −5 and 0 dB SNR.
To study the influence of the noise duration, the trained mod-
els were evaluated with the same noise recordings used during
training. Similar to the training, the noise recordings were lim-
ited in duration to 5, 10, 50 s or the total duration of the noise
recording. In addition, a different noise recording of the same
noise type was used to test the ability of the segregation system
to generalize to unseen noise fluctuations of the same kind.

Three different metrics were used for evaluation, namely
the H - FA, the clustering parameter γ and the STOI metric. The
clustering parameter γ was estimated by the graphical model
described in [12]. Given a binary mask, the graphical model
predicts the amount of clustering γ as a single number, where
γ = 1.0 reflects a mask with uniformly and randomly con-
nected T-F units. Larger values (e.g., γ = 2.0) reflect binary
masks with T-F units that are twice as likely to be in the same
state as its neighboring units [12]. The STOI measure is based
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Figure 2: H-FA, γ and STOI improvements for the four models and the IBM averaged across 180 sentences and SNRs (−5 and 0 dB)
for ICRA1 (left panels) and ICRA7 (right panels). Average STOI values of the unprocessed noisy speech were 0.66 (ICRA1) and 0.63
(ICRA7).

on a short-term correlation analysis between the clean and the
degraded speech [13] mapped to a value between 0 and 1. In
the current study, STOI improvements (∆ STOI) were reported
as the relative difference between the predicted STOI values for
the processed and the unprocessed noisy speech signal.

3.4. Experimental setup

To systemically analyze the influence of spectro-temporal in-
tegration in the front-end and the back-end, the following four
segregation models were tested, as listed in Tab. 1. “No inte-
gration” denotes the model with no delta features in the front-
end and no spectro-temporal integration in the back-end (∆t =
1,∆f = 1). “Front-end” includes the delta features. “Back-
end” does not utilize delta features, but applies spectro-temporal
integration in the back-end (∆t = 3,∆f = 9). “Front- & back-
end” exploits both delta features in the front-end and spectro-
temporal integration in the back-end (∆t = 3,∆f = 9).

Table 1: Configurations of the speech segregation system.

Front-end Back-end
Delta Feature W sizeModel

features dimension ∆t ∆f

No integration no 6 1 1
Front-end yes 18 1 1
Back-end no 6 3 9
Front- & back-end yes 18 3 9

4. Results
The performance of the four segregation models and the IBM
is presented in Fig. 2 as a function of the noise duration for
the two noise maskers ICRA1 (left panels) and ICRA7 (right
panels). The three different panels on each side show the H - FA
rate (top panels), the clustering parameter γ (middle panels) and
the STOI metric (lower panels) averaged across 180 sentences
and two SNRs (−5 and 0 dB).

In general, the segregation models produced higher H - FA
rates in the presence of the stationary ICRA1 noise than for the
ICRA7 noise, presumably because it was more difficult to sep-
arate the speech modulations from the non-stationary 6-talker
babble noise. For both noise maskers, the lowest H - FA rates
were observed for the “No integration” model and the highest
H - FA rates for “Front- & back-end”. Also, larger H - FA rates
were obtained for the “Back-end” than the “Front-end” model.
Each spectro-temporal integration strategy has previously been
shown to improve H - FA rates separately [6, 8, 10, 11]. These
previous results can be confirmed here for the ICRA7 noise by
comparing both the “Back-end” and “Front-end” models with
the “No integration” model.

The middle panels reveal that the IBM itself contains a cer-
tain amount of structure, presumably due to the compact rep-
resentation of speech-dominated T-F units forming glimpses of
the target signal. Also, reported values of γ from the model “No
integration” are consistent with previous results [12, 20]. Most
importantly, the γ values from models that exploited spectro-
temporal context through the SVM classifier in the back-end
(models “Back-end” and “Front- & back-end”) are consistently
larger than those from models where the SVM classifier did
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not incorporate contextual information across adjacent T-F units
(models “No integration” and “Front-end”). On the contrary,
the delta features alone do not seem to increase the amount of
clustering in the mask.

In the bottom panels, the STOI improvement of the IBM
indicates the largest possible intelligibility improvement that
the segregation models can achieve. The model “Front-end”
produced larger STOI improvements than “Back-end” for the
ICRA7 noise. Overall, the largest improvements were predicted
for the model “Front- & back-end”. In general, STOI predicted
larger intelligibility improvements for ICRA7 than ICRA1.

Furthermore, Fig. 2 demonstrates that the segregation sys-
tem can capture all relevant signal characteristics when the
same noise recording was used for training and testing, result-
ing in high H - FA rates and large STOI improvements for short
noise durations. This trend was more pronounced for the non-
stationary ICRA7 noise and decreased with longer noise dura-
tion. However, a moderate classifier complexity was chosen
here (16 Gaussian components with diagonal covariance matri-
ces), which was shown to reduce the risk of over-fitting the seg-
regation system [11]. As a result, the generalization ability was
improved, indicated by a stable system performance in terms
of H - FA rates and STOI improvements for noise durations of
50 s and beyond. In contrast to the H - FA rates and STOI, the γ
values stayed almost constant across the noise duration range.

Figure 3 illustrates binary masks for one particular CLUE
sentence mixed with ICRA7 noise at −5 dB SNR. Panel a)
shows the IBM and panels b)-e) present the EBMs for the four
tested models. The misclassified T-F units (misses and false
alarms) are shown on top of the binary masks for a visualization
of the error distributions. In addition, the evaluation metrics
are shown in parenthesis. The effect of exploiting contextual
knowledge in the back-end can be observed here. The panels
d)-e) show masks with a larger amount of T-F clustering than
the masks in panels b)-c). Obviously, the erroneous T-F units
also become more structured.

5. Discussion and conclusion
Using the SVM classifier to exploit contextual knowledge in
the back-end increased the H - FA rates but, at the same time,
the amount of clustering (γ) in the masks was increased. In
addition, the panels b)-e) in Fig. 3 revealed that the increased
amount of clustering also led to an increased clustering of the
two types of mask errors (miss and false alarm). Previously, it
has been argued that clustering of the two types of errors re-
duces the intelligibility scores in comparison to the randomly
distributed errors [12]. This is supported by the predictions of
the intelligibility scores with STOI, where larger improvements
using the delta features than exploiting contextual knowledge in
the back-end alone are predicted for the ICRA7 noise. This also
means that, for an increased γ, a higher H - FA rate is required
to obtain the same intelligibility score. It therefore seems prob-
lematic to exploit context in the back-end using a SVM classi-
fier, even though such a spectro-temporal integration stage im-
proves the H - FA rate [7, 8]. The findings also suggest that us-
ing delta features might be a better spectro-temporal integration
strategy in computational segregation systems, despite the fact
that the H - FA rate does not increase as much as when exploit-
ing contextual knowledge through a SVM classifier. However,
it is necessary to confirm these findings with actual listening
experiments.

In this study, both matched and unseen noise segments of
the same noise type were used to evaluate classification-based
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Figure 3: Binary masks for a CLUE sentence mixed with
ICRA7 noise at −5 dB SNR. Misses (target-dominated T-
F units erroneously labeled as masker-dominated) and false
alarms (masker-dominated T-F units erroneously labeled as
target-dominated) are shown on top of the masks.

segregation systems. As the ranking of the four models did not
change with increasing noise durations, the findings of the in-
fluence of the spectro-temporal integration stage apply to both
restricted and more realistic experimental setups with unseen
noise segments of the same noise type. Future research will
analyze the generalization ability of the segregation system to
unseen noise types and will consider large-scale training [21].

A recent study highlighted potential limitations of STOI in
predicting the intelligibility of binary-masked speech [22]. Two
observations from this study support these findings. Firstly, a
higher H - FA rate does not necessarily lead to a larger STOI
improvement as seen by comparing the “Front-end” and “Back-
end” models. Secondly, if the SVM-based integration strategy
in the back-end indeed has a detrimental effect on the intelligi-
bility scores, it would imply that STOI over-predicts the model
“Front- & back-end”. Thus, STOI alone would not account for
all of the model differences described in this study. It empha-
sizes the potential need of a single metric that comprehensively
predicts computational segregation performance and correlates
well with intelligibility.
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