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Abstract
Text-to-speech (TTS) synthesis systems have grown pop-

ularity due to their diverse practical usability. While most of
the technologies developed aims to meet requirements in labo-
ratory environment, the practical appliance is not limited to a
specific environment. This work aims towards improving intel-
ligibility of synthesized speech to make it deployable in realism.
Based on the comparison of Lombard speech and speech pro-
duced in quiet, strength of excitation is found to play a crucial
role in making speech intelligible in noisy situation. A novel
method for enhancement of strength of excitation is proposed
which makes the synthesized speech more intelligible in practi-
cal scenario. Linear-prediction analysis based formant enhance-
ment method is also employed to further improve the intelli-
gibility. The proposed enhancement framework is applied in
synthesized speech and evaluated in presence of different types
and levels of noise. Subjective evaluation results show that, the
proposed method makes the synthesized speech applicable in
practical noisy environment..
Index Terms: Text-to-speech synthesis, intelligibility, en-
hancement, strength of excitation, formants

1. Introduction
Research in TTS is progressing to make synthesized speech
more like natural speech. To replace human speaker by a TTS
system in practical environment, it must have flexibility to adapt
various manipulation to synthesized speech based on practical
scenario. Human beings are flexible to change their speech
signal characteristics in practical situation like noisy environ-
ment, by changing articulatory movement for the ease of the
listener’s perception. There are two possibilities to achieve this
with a TTS: first is to record hyper-articulated speech and de-
velop TTS using that. However, recording of hyper-articulated
database may be a complex process and the level of articulation
to be controlled may be based on user environment. The second
way is to modify existing TTS synthesized speech to make it
more intelligible in noisy environment. In noisy scenario, Lom-
bard speech is produced by hyper-articulation to make it intel-
ligible by compensating the audible disturbances introduced by
noise [1]. The extent of hyper-articulation depends on level of
noise present in the environment. To make TTS system deploy-
able in a practical noisy scenario, there is requirement of adapt-
ing characteristics of Lombard speech to synthesized speech
[2]. Lombard speech is more intelligible compared to speech
produced in quiet [3, 4]. Various studies are done in the litera-
ture to compare different attributes of Lombard speech to that
of normal speech, some of which can be enhanced to make the
speech signal sound like Lombard speech [5]. Lombard speech

is found to have more duration, pitch and less spectral tilt com-
pared to speech produced in quiet. The level of these modifi-
cations depends on the extent of noise present in the environ-
ment [6–8]. Methods like consonant-vowel (CV) energy ratio
boosting, spectral shapers, high-pass-filtering followed by am-
plitude compression are found to enhance intelligibility to sig-
nificant extent [9–12]. There are several works done in appli-
cation of speech synthesis in noise, which also aims to modify
spectral and temporal attributes to enhance the intelligibility of
synthesized speech. Significant improvement in intelligibility
is achieved in [13], in presence of speech shaped noise by mod-
ifying Mel-cepstral-coefficients. Spectral shaping techniques
with energy re-allocation from higher to lower frequency is
found to improve intelligibility in stationary and speech shaped
noise [14]. Further, [15] makes an effort to add change in du-
ration, fundamental frequency and spectral tilt to increase in-
telligibility of synthesized speech. A highly intelligible hidden
Markov model (HMM) based speech synthesizer is developed
by adapting the Lombard speech and also by modifying the
vocoder attributes [16]. Along with modification of vocoder pa-
rameters, various other modifications like duration, pitch, spec-
tral tilt, harmonic-to-noise ratio, formant enhancement are also
implemented and reported to improve intelligibility compared
to natural speech in low SNR condition. A useful database for
studying speech synthesis in noise, (CMU SIN) is described
in [17], where first 500 utterances of CMU ARCTIC dataset
have been recorded with and without noise. For noisy condi-
tion, low level babble noise is played through headphone to the
voice talent during recording. In [18], speaking rate and fun-
damental frequency are analyzed for CMU SIN database and
temporal modification like modifying dynamic range of speech
signals are performed.

In all the works described above, different modifications
like duration, pitch, different characteristics of vocal-tract-
spectrum are extensively performed to achieve adequate intel-
ligibility of synthetic speech in presence of noise. As of now,
no modification of source parameters are found to be reported
except the fundamental frequency (F0). As in Lombard speech,
due to hyper-articulation the glottal closure becomes sharper,
there are significant changes in source attributes also [19]. Au-
thors in [20] have done some useful analysis of excitation source
characteristics in Lombard speech. Duration, pitch, strength of
excitation and loudness parameter are compared across Lom-
bard and normal speech. Significant difference in the distri-
bution of strength of excitation and loudness are observed in
[20]. However, loudness modification or strength of excitation
enhancement is not attempted in the field of speech synthesis
in noise. Analysis and enhancement of source characteristics
may be an interesting and useful cue for enhancing intelligibil-
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ity or adapting source characteristics of Lombard speech. In this
work, source characteristics are analyzed and compared across
Lombard speech and speech produced in quiet for CMU SIN
database. Based on the observations, a novel source enhance-
ment method is proposed to modify synthesized speech and
make it more intelligible in noisy environment. A linear pre-
diction (LP) based formant enhancement is also employed to
further boost the enhancement.

The rest of the paper is arranged in the following sec-
tions: Section 2 compares characteristics of source in Lombard
speech and speech produced in quiet. Based on the observa-
tions, source modification of synthesized speech is performed
in Section 3. Section 4 describes formant prominence enhance-
ment. Experimental evaluation is explained in Section 5. Sec-
tion 6 discusses the conclusion and future direction.

2. Analysis of strength of excitation for
Lombard speech
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Figure 1: (a) 30 ms speech segment (b) LP residual (c) HE of
LP residual for speech produced in quiet; (d) 30 ms speech
segment (e) LP residual (f) HE of LP residual for speech

produced in noise

The main focus of this work is to enhance source aspects
and formant prominence of synthesized speech to make it intel-
ligible in noisy situation. In this regard, CMU-SIN database is
used for analysis [17], as it contains 500 sentences of the same
speaker in noisy and quiet environments. It is convenient for
comparison due to the same speaker’s same utterances in both
conditions. Moreover, the database is specifically designed for
speech synthesis in noise. Since this database is recorded in
presence of very low level babble noise, the entire database can-
not be termed as Lombard speech. However, by manual listen-
ing it is found that some speech files are very loud and Lombard
effect is prominent in those cases. By listening to the entire
database and comparing utterances in noisy and clean environ-
ment, 200 utterances are selected out of 500 in each condition
which are found to have significant difference during perception
and have effect of hyper-articulation. In this study, the manu-
ally selected utterances produced in noise are termed as Lom-
bard speech and corresponding utterances produced in quiet are
termed as normal speech.

LP residual is a useful approximation of time varying exci-
tation source of speech signal, where sharp discontinuities can
be observed at glottal closure instants (GCIs), either in positive
or negative polarity. This behavior of impulse-like excitation
can be better visualized and quantified from Hilbert envelope
(HE) of LP residual of speech signal. Sharpness of these peaks
also correlates to loudness parameter as described in [21]. HE

(he(n)) of LP residual (e(n)) is defined as follows:

he(n) =
√

e2(n) + e2h(n) (1)

where eh(n) is Hilbert transform of e(n) and in given by

eh(n) = IDFT [Eh(k)] (2)

where,

Eh[k] =

{
−jE(k) k = 0, 1, ...(N

2
)− 1;

jE(k) k = (N
2
), (N

2
) + 1, .....(N − 1)

(3)

Here, IDFT denotes inverse discrete Fourier transform and
E(k) is computed as discrete Fourier transform (DFT) of e(n)
and N is number of points for computing DFT.
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Figure 2: Superimposed segments of Hilbert envelope of LP
residual in the vicinity of impulse-like excitations for (a)

speech produced in quiet, (b) Lombard speech.

Figure 1(a) and (d) depict 30 ms speech segments corre-
sponding to speech produced in clean and in noisy environments
respectively, which correspond to same sound unit from first ut-
terance of CMU SIN database. Figure 1(b) and (e) show cor-
responding LP residuals and (c), (f) shows HE of LP residuals
for normal and Lombard speech respectively. The sharp dis-
continuities in LP residual of Lombard speech segment in Fig-
ure 1(e) are more emphasized in HE of LP residual, as shown
in Figure 1(f). The peaks of HE of LP residual in case of Lom-
bard speech are more close to impulse-like excitations, which
has maximum strength. The spread and distribution of en-
ergy around GCIs seem to be less in case of Lombard speech.
The spread of energy around GCIs can be a representation of
strength of excitation of a speech signal [21]. For better in-
terpretation of this fact, 3 ms segments of HE of LP residual
around each GCI are superimposed over each other. Each seg-
ment is normalized with respect to maximum value of the seg-
ment. The resultant plot is shown in Figure 2 where (a) shows
the superimposed plot for all voiced frames of speech produced
in quiet and same for Lombard speech is shown in (b). It is evi-
dent from dotted regions of Figure 2, that the energy associated
with the side lobes around main lobe (corresponds to GCI) of
normal speech is more compared to that of Lombard speech. To
quantify this, entire 3 ms of each segment is divided into three
equal parts; average energy associated with each region be E1,
E2 and E3. Then, ratio of energy of middle 1 ms segment, to
sum of energy of both side segments (each of 1 ms) is calculated
as β = E2

E1+E3

. The distributions for this β corresponding to
Lombard and normal utterances are shown in Figure 3, which
shows significant difference between both the classes for voiced
segments. However, in case of unvoiced segments, no clear dis-
tinction in β is observed. Hence, for later part of this work
excitation strength is modified only in case of voiced regions of
synthesized utterances.
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Figure 3: Distribution of β obtained from HE of LP residual
for voiced and unvoiced frames in case of Lombard and

normal speech

3. Enhancement of strength of Excitation
As per the evidences obtained in Section 2, sharpness of peaks
in HE of LP residual is an important cue of hyper-articulation.
In is section, effort towards modifying excitation source or
strength of excitation of synthesized speech to make it similar to
excitation source of Lombard speech is explained in detail. LP
residual represents excitation source and its samples are highly
uncorrelated, therefore robust to modification to some extent.
The first step towards enhancement of LP residual would be lo-
cating GCIs accurately, which is performed by employing zero
frequency filtered signal (ZFSS), where positive zero crossings
of ZFFS can be represented as GCIs [22]. For introducing a
large discontinuity at each GCI, residual signal around the GCI
is multiplied by a Gaussian window function (w) with mean μ
and variance σ. Let us consider, number of GCIs in the given
utterance be N . To derive residual signal r(n), the speech sig-
nal is passed through LP inverse filter. The samples of r(n)
(r(ni)) around ith GCI is enhanced as follows:

ren(ni) = r(ni) ∗ w (4)

where ni = (ei −
l
2
), ...ei, ...(ei −

l
2
), ei are epoch loca-

tions, i = 1, 2, ...N and l is length of the Gaussian shaped win-
dow. Minimum and maximum values of the window can be se-
lected depending on the required amount of enhancement. Sim-
ilarly, variance can also be changed. In this work, l = 0.5 ms,
σ = 1 and amplitude of the window varies from 1 to 3. These
parameters are selected experimentally in such a way, that the
energy of the side-lobes gets de-emphasized and energy as-
sociated with the main-lobe (at each GCI) gets more empha-
sized. The enhanced residual is passed through the previously
obtained LP filter to derive the enhanced speech signal. The
enhanced speech seems to be more intelligible in presence of
noise. This is evident from the Figure 4, where the LP resid-
ual in Figure 4(e) clearly have sharper discontinuities compared
to that of Figure 4(b). Again, same is visible from Figure 4(c)
and (f). In Figure 4, (a), (b), (c) corresponds to 30 ms speech
segment, its LP residual and HE of LP residual respectively for
normal speech, while (d), (e), (f) depicts same for enhanced
speech. In Figure 5(a) and (b), the narrow-band spectrogram
corresponding to LP residual of a normal utterance and en-
hanced residual is shown respectively. The harmonics of source
in voiced portions are darker in the spectrogram corresponding
to enhanced LP residual compared to that of normal speech.

The above discussion establishes the enhancement of
strength of excitation of speech produced in quiet to make it
similar to speech produced in noise. After achieving the first
level of enhancement with respect source, the enhanced speech
is further subjected to formant enhancement to increase intelli-
gibility.
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Figure 4: (a) 30 ms speech segment (b) LP residual (c) HE of
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Figure 5: Narrow-band spectrogram for LP residual of (a)
Speech produced in quiet, (b) Enhanced speech.

4. Enhancement of formant prominence
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Figure 6: Original and enhanced log-magnitude LP spectrum
for 20ms speech segment

Formant prominence also plays a vital role in perceived in-
telligibility of speech. Moreover, concentration of energy over
spectral range, where human auditory system is most sensi-
tive, also improves intelligibility. Based on these two facts,
enhancement of formants based on LP analysis is followed in
this work [23]. Firstly, speech signal is pre-emphasized and fed
to LP inverse filter obtained from first order LP analysis. As
pre-emphasis increases energy at higher frequency and first or-
der LP analysis models the spectral tilt, the residual signal ob-
tained by passing speech signal through first order LP inverse
filter will have more higher frequency components. Further, us-
ing this residual, ( fs

1000
+ 4) order LP analysis is performed to

model LP spectrum with formant peaks and more higher fre-
quency energy concentration. Then, the speech signal to be en-
hanced (obtained from source enhancement) is passed through
the modeled LP filter which results in speech with enhanced
spectral peaks and with more energy towards higher frequency.
This is evident from Figure 6, where, all the formant peaks in
the enhanced spectrum are sharpened and concentration of en-
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ergy towards higher frequency region increase. Here, the source
enhanced speech as described in Section 3, is passed through the
formant enhancement process. Figure 7 shows the wide-band
spectrogram (framesize 5ms) of (a) normal speech, (b) after
source enhancement is performed, (c) after both source and for-
mant enhancement (d) Lombard speech for the same utterance.
In the dotted regions, the enhancement can be clearly observed
if all the four cases are compared.
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Figure 7: Wide-band spectrogram for (a) Speech produced in
quiet, (b) Strength of excitation Enhanced speech, (c) Source
and formant enhanced speech (d) Lombard speech for the

same utterance.
Based on the application of TTS in practical environment,

the goal of this work is to enhance synthesized speech. The
synthesizer used in this case may be concatenative synthesis
based on unit selection algorithm (USS) or statistical paramet-
ric speech synthesis (SPSS). As CMU SIN database is specif-
ically designed for application in USS based TTS in noise, in
the later section of the paper, experiments are performed over
synthesized speech obtained from USS based TTS using Fes-
tival framework [24]. Nevertheless, the same enhancement of
strength of excitation and formant prominence is applicable to
utterances synthesized using SPSS.

5. Experimental Evaluation
For evaluating the effectiveness of the proposed method,
two USS based TTS systems developed using CMU SIN
database are employed. One is using speech produced in
quiet (TTS1) and the other is using Lombard speech (TTS2).
Firstly, enhancement of strength of excitation is performed
as described in Section 3 over synthesized speech from
TTS1 (ENH1 TTS1). These enhanced speech files are
fed to formant enhancement process, which are termed as
ENH2 TTS1. All these four types of speech files are added
with babble noise and factory noise, at different signal-to-noise
ratios (SNR) (2dB, 10dB, 20dB) and the intelligibility is eval-
uated in terms word accuracy rate (WAR) and intelligibility
based mean opinion score (MOS) over a 5 point scale, where
1 is for least intelligibility and 5 is for required intelligibility.
WAR is the percentage of words which are correctly perceived
by the listeners with respect to total number of words in the
synthesized speech. For evaluation of MOS, the subjects are
asked to decide the score based on how much attention or effort
they need to pay to perceive the synthesized speech. Utterances
which require less listening effort, intelligibility score will be
high for those.Total 15 subjects took part in the subjective study
who are research scholars having knowledge about speech in-
telligibility. All four types of speech files with different types

and levels of noise, are coded randomly to avoid bias towards
any method. Moreover, sentences used for evaluation are non-
repeating. WAR and MOS obtained are shown in Table 1 for
different types and levels of noise. As the database CMU SIN
is US English and the listeners are native Indian, therefore, due
to mismatch in accent, maximum WAR and MOS for TTS2

(target Lombard synthesized speech) are 75.0% and 4.2 respec-
tively in presence of babble noise with 20dB SNR; accordingly,
it further reduces with the decrease in SNR. Therefore, for com-
parison between normal synthesized speech (TTS1) and en-
hanced synthesized speech ENH1 TTS1, the gain of WAR in
dB is shown in Figure 8(a). It can be observed that the gain
increases with decrease in SNR and it is more useful in case of
babble noise. Same can be interpreted from Figure 8(b) which
depicts the gain in WAR due to the strength of excitation en-
hancement. A significant gain is obtained from enhancement of
strength of excitation which can be observed from Figure 8(b).
Table 1: WAR% and MOS result for babble noise and factory

noise at SNR 2dB, 10dB and 20dB

Word accuracy rate (%)
Noise type Noise level (SNR) TTS1 ENH1 TTS1 ENH2 TTS1 TTS2

2dB 23.6 34.8 38.2 35.7
Babble noise 10dB 55.3 58.6 61.6 63.4

20dB 62.7 63.5 68.3 75.0
2dB 21.3 32.0 38.0 34.9

Factory noise 10dB 43.6 52.8 59.5 61.3
20dB 51.5 53.2 58.0 65.0

MOS for intelligibility
Noise type Noise level TTS1 ENH1 TTS1 ENH2 TTS1 TTS2

2dB 2.2 2.5 3.3 3.2
Babble noise 10dB 2.8 2.9 3.1 3.8

20dB 4.0 4.0 4.1 4.2
2dB 2.3 2.4 2.6 2.8

Factory noise 10dB 2.2 2.7 3.2 3.6
20dB 3.2 3.3 3.5 3.9
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Figure 8: Relative improvement in WAR of (a) normal speech
and source enhanced speech, (b) normal speech and source

and formant enhanced speech

6. Conclusions
This work focuses on improving intelligibility of synthesized
speech in presence of noise. In this regard, strength of excita-
tion of Lombard speech and normal speech are compared and
observed that, it is high in case of Lombard speech. Therefore,
strength of excitation of synthesized speech is enhanced to im-
prove intelligibility. Further, for the source enhanced speech,
spectral prominence is also improved to achieve required level
of intelligibility in noisy environment. Future work may focus
on other aspects of the speech signal to be enhanced for robust
speech synthesis.
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