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Abstract 
Several speech synthesis and voice conversion techniques can 
easily generate or manipulate speech to deceive the speaker 
verification (SV) systems. Hence, there is a need to develop 
spoofing countermeasures to detect the human speech from 
spoofed speech. System-based features have been known to 
contribute significantly to this task. In this paper, we extend a 
recent study of Linear Prediction (LP) and Long-Term 
Prediction (LTP)-based features to LP and Nonlinear 
Prediction (NLP)-based features. To evaluate the effectiveness 
of the proposed countermeasure, we use the corpora provided 
at the ASVspoof 2015 challenge. A Gaussian Mixture Model 
(GMM)-based classifier is used and the % Equal Error Rate 
(EER) is used as a performance measure. On the development 
set, it is found that LP-LTP and LP-NLP features gave an 
average EER of 4.78 % and 9.18 %, respectively. Score-level 
fusion of LP-LTP (and LP-NLP) with Mel Frequency Cepstral 
Coefficients (MFCC) gave an EER of 0.8 % (and 1.37 %), 
respectively. After score-level fusion of LP-LTP, LP-NLP and 
MFCC features, the EER is significantly reduced to 0.57 %. 
The LP-LTP and LP-NLP features have found to work well 
even for Blizzard Challenge 2012 speech database. 

Index Terms: Speaker verification, spoof detection, linear 
prediction, long-term prediction, nonlinear prediction. 

1. Introduction 
Recently, Automatic Speaker Verification systems (ASVs) are 
becoming more popular and are widely used. The main goal of 
ASV systems is to accept the claimed identity of the genuine 
speaker and reject the claim of an impostor. ASV systems are 
becoming very popular due to the less Equal Error Rate (EER) 
achieved. However, they are found to be highly vulnerable to 
spoofing attacks. These attacks can be due to impersonation, 
replay, speech synthesis (SS) and voice conversion (VC). 
Impersonation refers to the attacks using humans to alter their 
voice (such as mimicking) [1], [2]. Replay attack is caused by 
reusing pre-recorded speech signal of the genuine or target 
speaker [3]. The SS technique refers to text-to-speech (TTS) 
synthesis systems (generally Hidden Markov Model (HMM)-
based TTS systems (HTS) and adapted HMM-based systems 
[4], [5]). The VC technique refers to modifying the source 
speaker’s speech to make it sound-like the genuine target 
speaker [6], [7]. A review of various spoofing attacks and their 
countermeasures are provided in [8]. It has been known that 
SS and VC are easily accessible than impersonation and replay 
attacks. In addition, SS and VC speech can be generated for 
any speaker. Thus, we concentrate on SS and VC spoofing 
attacks. Recently, the ASVspoof challenge had been organized 
as a special session of INTERSPEECH 2015 [9]. The aim of 

the ASVspoof 2015 challenge was to design a robust detector 
which could classify natural and spoofed speech for both 
known and unknown attacks. At the ASVspoof 2015 challenge, 
various countermeasures were proposed which includes 
modified group delay [10], local binary patterns [11], relative 
phase shift (RPS) [12], wavelet-based features [13], cochlear 
filter cepstral coefficients and change in instantaneous 
frequency (CFCCIF) [14], phonetic-level phoneme posterior 
probability (PPP) and i-vector subsystem-based features [15]. 
As the SS and VC speech is synthesized using a vocoder, the 
phase information is lost in synthesized or voice converted 
speech. Therefore, many of these features use phase-based 
approaches which may not work for non-vocoder or unit-
selection-based speech. In addition to system-based features, 
several excitation source-based features have been explored 
using the challenge database. Previous work on the excitation 
source-based features includes pitch pattern-based features 
[16], Linear Prediction (LP)-based features [17]- [18] and very 
recently proposed fundamental frequency (F0) contour and its 
variations along with the strength of excitation (SoE) feature 
for vocoded speech detection in [19].  

Our present work is directed towards using excitation 
source-based features for spoof detection task. In particular, 
extending the recently reported work in [17], where LP and 
Long-Term Prediction (LTP)-based analysis was carried out 
based on the fact that the SS and VC speech are quite likely to 
be very easily predicted (if it is generated with a simplified 
acoustic model) or very difficult to predict (if any artifacts are 
present in the speech signal). Here, we explore the fact that the 
speech production mechanism is a nonlinear phenomenon and 
prediction of spoofed speech by nonlinear prediction (NLP) 
may provide complementary information to that obtained by 
LP-LTP analysis. The source-based features derived from LP-
LTP and LP-NLP analysis are combined at score-level and 
also with the state-of-the-art Mel Frequency cepstral 
coefficients (MFCC) spectral features. It is observed that using 
LP-NLP-based features with the LP-LTP and MFCC features, 
the % EER for the detection system decreases more than using 
LP-LTP, LP-NLP or MFCC alone.   

2. Prediction Techniques 

2.1. Linear Prediction (LP) 
The effectiveness of LP analysis is due to its ability to capture 
implicitly the frequency response of the time-varying vocal 
tract area function [20]. The speech signal at nth instant can be 
expressed as a linear combination of previous 'p' samples, i.e., 
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where x� (n) is the predicted signal for x(n). The difference 
between the original signal x(n) and predicted signal x� (n) is 
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called LP error or LP residual which is denoted by e(n). It can 
be said that the prediction coefficients {�k} where k�[1,p] are 
able to efficiently model the speech signal within a particular 
frame based on the prediction gain Gp, defined as [17],
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where Ex and Ee are the energies of original speech signal and 
predicted error signal, respectively. If Gp is high the prediction 
is better. The prediction coefficients are estimated by 
minimizing the l2 energy of LP residual and it is given by [20],  
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2.2. Long-Term Prediction (LTP) 
The LTP technique is widely used in speech coding, e.g., in 
GSM 06.10 or in narrowband and wideband adaptive multi-rate 
coders [21]. LP is the short-term correlation of each sample 
with p immediate preceding samples while LTP represents the 
long-term correlation of sample x(n) with 2Q+1 similar 
samples which are a pitch period T away from sample x(n) 
(Chap. 8, [22]) as shown in Figure 1. Thus, LTP operates on 
vectors rather than on individual samples. In this case, a vector 
of samples can be predicted using another vector of samples 
from the signal’s history. The best matching vector is 
subtracted from LP residual error e(n) resulting in LTP residual 
signal e�(n). The LTP works efficiently with quasi-periodic 
voiced speech signals. The prediction error and prediction gain 
are the same as that of LP analysis. A schematic diagram of 
LP-LTP-based countermeasure for spoofing is shown in [17]. 

Figure 1: Schematic of the short-term correlation of a sample 
with 'p' immediate past samples and the long-term correlation 
with the samples which are a pitch period 'T' away. After [22]. 

2.3. Nonlinear Prediction (NLP) 
In practice, our speech production mechanism is a nonlinear 
phenomenon. This is because of the nonlinear interaction or 
coupling of the excitation source and the system. A nonlinear 
system with k memory terms, represented by the Volterra 
series expansion (which relates the input and output of the 
system) is used. For a dynamic system, a closed-loop version 
of the Volterra series is used in which the output x(n) is fed 
back as a delayed input (i.e., x(n) ≡ y(n)). Therefore, we 
analyze the univariate time series by using a discrete Volterra-
Wiener (VW) series of degree d and predictor memory k to 
calculate the predicted series x� (n) is given by [23]: 
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where the functional basis {zm(n)} consists of all the distinct 
combinations of the embedding space coordinates up to degree 
d with a total dimension M=(k+d)!/(k!d!). Thus, each model is 

parameterized by k and d corresponding to the predictor 
memory and the degree of nonlinearity in the model, 
respectively. The coefficients [1, ]{ }m m Ma �  in eq.(5) are estimated 
by Korenberg’s fast algorithm using Gram-Schmidt procedure 
from the linear and nonlinear autocorrelation of the data series 
itself [24]. The difference between x(n) and x� (n) is referred to 
as the NLP residual. The schematic diagram of LP-NLP-based 
proposed countermeasure is shown in Figure 2. 
      

Figure 2: Schematic diagram of LP-NLP approach as the 
proposed countermeasure. 

To show how NLP is efficient over the LP and LTP analysis, 
we compare the LP, LTP and NLP residual as shown in Figure 
3. For a voiced region of the natural speech signal, the LP 
residual, LTP residual and NLP residual is observed. It is 
observed that the NLP residual has less relatively energy than 
LP and LTP residual. This was observed over several such 
voiced regions. 

Figure 3: Diagram of comparison among LP, LTP and NLP 
(a) LP, (b) LTP and (c) NLP residual for voiced speech. 

To further statistically quantify it, the average l2 norm is 
estimated of all residuals for 100 natural utterances of the D1
speaker of the ASVspoof challenge database. For LP analysis, 
d=1 and for NLP, d=2 is considered. To keep the number of 
coefficients constant for LP and NLP analysis, p =2, 14, 20 are 
considered and corresponding to k =1, 4, 5 giving a total of 3, 
15 and 21 coefficients, respectively. The average l2 energy 
using eq. (3) are shown in Table 1. From this result, it is 
observed that the energy of prediction error decreases for NLP 
as compared to LP and LTP for same number of coefficients.  

Table 1. Average l2 energy of prediction error signal 
over 100 utterances 

Total number of coefficients 
Features 3 15 21 

LP residual 12.3 6.42 6.18 
LTP residual 10.5 5.52 5.26 
NLP residual 10.5 3.63 3.16 

3. Proposed Countermeasures 
While considering the prediction error-based countermeasures, 
we assume that synthetic or converted speech signals will be 
predicted too well or inefficiently predicted. If it will be 
predicted too well, the prediction gain Gp in eq. (2) is high, 
else if it will not be predicted efficiently, the prediction gain is 
lower than the usual [17]. Similarly, several such measures can 
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be used as proposed for LP-LTP analysis in [17]. Our 
proposed countermeasures using LP-NLP approach (as shown 
in Figure 2) consist of the following features.  

• MeanLPerr- mean energy of the LP error, i.e., mean 
energy of e(n), 

• MeanNLPerr- mean energy of the NLP error, i.e., 
energy of e'(n), 

• MaxNLPerr- maximum energy of the NLP error, 
• MeanNLPgain- mean NLP gain (i.e., mean ratio 

between energies of the LP and NLP residual, mean 
Gp as defined in eq. (2)),  

• MaxNLPgain- maximum of the Gp for NLP, 
MeanErrLen- mean length of segments with the 
NLP error above the threshold �, 

• MaxErrLen- maximum length of segments with the 
LTP error above the threshold �, 

• MeanNoErrLen- mean length of segments with the 
NLP error equal to or below the threshold �, 

• MaxNoErrLen- maximum length of segments with 
the NLP error equal to or below the threshold �, 

• EnergyLP- total energy of LP residual e(n), 
• EnergyNLP- total energy of NLP residual e'(n), 
• ErrChangeRate- the NLP threshold crossing rate 

(counted per 20 ms frame).  
Figure 4 shows the histogram of two selected features, i.e., the 
MeanNoErrLen for LP-LTP-based and ErrChangeRate for 
proposed LP-NLP-based features. It is observed that the 
MeanNoErrLen for LP-LTP analysis has significantly 
different distribution for human and spoofed speech. For LP-
NLP features, the ErrChangeRate is more for natural than for 
spoofed speech. Thus, spoof-specific differences exist in 
countermeasures from LP-LTP and LP-NLP analysis. 

      Panel I           Panel II 

  

Figure 4: Histogram of selected countermeasures. Panel I: 
MeanNoErrLen for LP-LTP and Panel II: ErrChangeRate for 
LP-NLP for (a) natural speech (b) spoofed speech.  

4. Experimental Setup 

4.1. Databases 
In this paper, the experiments were conducted on the 
ASVspoof 2015 challenge database [9]. This dataset is divided 
into three categories, namely, training, development and 
evaluation sets. The details of the speakers and number of 
utterances of natural and spoof speech signals are shown in 
Table 2. The spoofed speech was generated using 10 different 
spoofing algorithms (S1, S2, …, S10). These algorithms are 
either based on the SS or VC technique. The training and 

development set consists of S1 to S5 spoof and evaluation set 
consists of S1 to S10 (i.e., testing on unknown attacks). 

Table 2. Statistics of the ASVspoof 2015 challenge dataset 
No. of speakers No. of utterances 

Dataset Male Female Genuine Spoofed 
Training 10 15 3750 12625 

Development 15 20 3497 49875 
Evaluation 20 26 9404 184000 

In addition, experiments were also done on the Blizzard 
Challenge 2012 database. In this database, the synthetic 
speech utterances were generated from various systems, A- K. 
In particular, system A contains natural speech signals 
whereas systems B, G, F and I were built using unit-selection 
method. Systems E, H, K were built using statistical methods. 
Systems C and D were built using hybrid approach whereas 
diphone-based method is used to build system J. Each of the 
system has two categories, namely, paragraphs and sentences, 
consisting 60 and 100 speech signals, respectively. 

4.2. Feature Extraction 
In this paper, for LP analysis p=20 is considered for every 25 
ms frame length (due to the relationship between sampling 
frequency Fs and length of vocal tract [25]). The LP residual 
is calculated after subtracting the predicted signal (obtained 
using the LP coefficients) from the original speech signal. For 
LTP and NLP operation, the LP residual is framed using 5 ms
window. Furthermore, for NLP, d=2 and k=5 is considered in 
eq. (4). For ErrChangeRate feature in LP-LTP and LP-NLP, 
the threshold value is set to �=0.02. The entire analysis is done 
for voiced regions. The LP-LTP and LP-NLP features form a 
12-dimensional (12-D) feature vector for the entire speech 
signal. In addition to residual-based features, 12-D MFCC 
feature vectors (excluding 0th coefficient) were extracted using 
28 subband filters for every 25 ms frame length with a frame 
shift of 12.5 ms. In addition to the static features, the � and the 
�� features are considered to obtain 36-D MFCC features for 
each frame of the speech signal. For representation, the LP-
LTP and LP-NLP approaches are abbreviated as M1 and M2, 
respectively. In [17], the features are extracted by processing 
sample by sample on the speech signal, whereas in our work, 
we consider the frame-level processing for fast processing and 
to facilitate comparison with the frame-based MFCC.  

4.3.   Spoof Detection System 
For spoofed speech detection, Gaussian Mixture Model 
(GMM)-based classifier with 128 mixture components was 
considered. The 3750 training utterances were taken to build 
GMM Model1 for natural speech signals whereas 12625
training utterances were taken to build GMM Model2 for 
spoofed speech signals. Final scores are represented in terms 
of log-likelihood ratio (LLR). The decision of the test speech 
being natural or spoofed is based on the LLR, i.e., 

( )_ 1 _ 2),(LLR log LLk Model log LLk Model= −       (6) 

where LLk_Model1 and LLk_Model2 are the likelihood scores 
from the Model1 and Model2, respectively. In this work, a 
score-level fusion is also considered, which is a weighted 
average of log-likelihood scores as follows,

1 2(1 )combine f feature f featureLLK LLK LLKα α= − + ,           (7) 

where LLKfeature1 and LLKfeature2  are log-likelihood scores of 
feature1 and feature2, respectively. The weights of the scores 
are decided by the fusion parameter �f. 
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Table 3. The EER (%) on the development set for score-level fusion between M1, M2 and 36-D MFCC features and the fusion of best 
combination of M1-M2 (best_M1-M2) with 36-D MFCC features 

Feature1 Fusion Factor �f Feature2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
M1 4.78 4.14 3.71 3.60 3.60 3.83 4.28 4.97 5.77 7.32 9.18 M2 
M1 4.78 4.52 4.20 3.83 3.40 2.95 2.46 1.89 1.32 0.80 1.60 36-D MFCC 
M2 9.18 8.64 8.06 7.46 6.66 5.92 4.86 3.95 2.60 1.37 1.60 36-D MFCC 

best_M1-M2 3.60 3.32 3.03 2.77 2.46 2.14 1.72 1.34 0.92 0.57 1.60 36-D MFCC 

Table 4. The average EER (%) on the evaluation set for individual attacks for M1, M2, a fusion of M1 and M2 (best_M1-M2), 36-D 
MFCC and score-level fusion of best_M1-M2 fusion with 36-D MFCC features 

Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Known Unknown Average 
(w/o S10) 

Average 
(with S10) 

M1 5.74 4.13 0.02 0.02 1.45 2.55 7.49 0.04 0.95 86.66 2.27 19.54 2.49 10.91 
M2 9.07 7.70 1.67 1.45 4.55 10.68 24.50 0.97 3.27 77.59 4.89 23.40 7.10 14.15 

best_M1-M2 (�f=0.4) 2.67 1.82 0.00 0.00 0.48 0.97 6.99 0.02 0.48 83.87 0.99 18.47 1.49 9.73 
36-D MFCC 0.01 0.99 0.00 0.00 0.83 0.90 0.05 0.00 0.08 39.72 0.37 8.15 0.32 4.26 

best_M1-M2 + (36-D MFCC)  0.00 0.04 0.00 0.00 0.02 0.02 0.01 0.00 0.01 51.11 0.01 10.23 0.01 5.12 

The Detection Error Tradeoff (DET) curve is used to measure 
the performance of various features [26]. It gives uniform 
treatment to both False Acceptance Rate (FAR) and Miss 
Rejection Rate (MRR) for evaluation of system performance. 
In DET curve, the operating point where FAR and MRR 
becomes equal is referred as the EER. 

5. Experimental Results 
The results in EER on the development set for the M1, M2 and 
MFCC features are shown in Table 3. The % EER of M1 and 
M2 on development set are 4.78 and 9.18, respectively. It is 
observed that the best score-level fusion of M1 and M2 is 
obtained for �f =0.4 (best_M1-M2) for which the EER is 3.6
%. For MFCC, we obtain % EER as 3.26 %, 2.17 % and 1.60 
% for 12-D, 24-D and 36-D feature sets, respectively. 
Therefore, only 36-D MFCC feature vector is considered 
hereafter. To explore possible complementary information in 
source and systems features, the M1 and M2 features are fused 
with MFCC at various �f. It is observed from Table 3 that, at 
score-level fusion of M1 with MFCC and M2 with MFCC, the 
EER reduces to 0.80 % and 1.37 %, respectively. Furthermore, 
the best_M1-M2 scores are further combined at score-level 
with 36-D MFCC. This fusion at �f =0.1, reduces the % EER 
of MFCC from 1.6 to 0.57 (i.e., 65 % decrement). Hence, M1 
and M2 extracted additional information which MFCC is 
unable to extract on the same data. The DET curve on 
development set is shown in Figure 5. It is observed that the 
MRR for the best_M1-M2 and MFCC (at �f =0.1) reduces 
significantly, as compared to M1, M2 and MFCC used alone.  

Thereafter, for the evaluation set, the % EER of the 
individual attack is reported in Table 4. As the evaluation set 
has vocoder-based speech (S1-S9) and vocoder-independent 
speech (S10), we report the average % EER with and without 
S10. Considering the % EER for only vocoder-based speech, 
the % EER using M1 and M2 is 2.49 and 7.10, respectively. 
For the best fusion of M1 and M2 the EER reduces to 1.49 %. 
The 36-D MFCC features on its own gave 0.32 % EER which 
significantly reduced to 0.01% after fusion of best_M1-M2 and 
MFCC (�f =0.1). Thus, including the LP-NLP-based features 
with the LP-LTP-based features and MFCC, the % EER is 
significantly improved for vocoded speech. The average % 
EER could not improve due to the high % EER obtained for 
the vocoder-independent S10 spoof. This is because the 
models were trained on vocoder-based spoofs and the testing 
was carried on vocoder-independent spoof. Thus, there is a 
need for more generalized countermeasures.  

On testing with the sentence category of Blizzard 
Challenge 2012 database, it is observed from Table 5 that % 
EER of speech signals generated using system E, K, B, I and J 
is less for M1 and M2 than 36-D MFCC. 

Table 5.  The average EER (%) on the Blizzard Challenge 
2012 database for M1, M2 and 36-D MFCC features 

System 
Name Synthesis Technique Features 

M1 M2 36-D MFCC 
E Statistical 10 41 61 
H Statistical 42 42 3 
K Statistical 43 51 73 
F Unit selection 63 46 15 
G Unit selection 73 39 27 
B Unit selection 56 53 67 
I Unit selection 49 28 69 
J Diphone 27 45 69 
C Hybrid 54 49 47 
D Hybrid 55 37 42 

�

�
�

Figure 5: DET curves on development set 

6. Summary and Conclusions 
In this paper, we propose a countermeasure to detect the 
spoofed speech using LP and NLP-based approach. On the 
development set, for the LP-LTP approach using sample-by-
sample processing  [17], the EER obtained is 8.90 % which 
decreases to 4.78 % by frame-by-frame processing. The % 
EER further reduces to 3.6 on score-level fusion LP-LTP and 
LP-NLP-based countermeasures. The countermeasures are 
tested on the ASVspoof 2015 and the Blizzard Challenge 2012 
databases. Our future research work will be focused on the 
frequency-domain LP analysis for the spoof detection task. 
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