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Abstract
The field of Computational Paralinguistics is rapidly grow-
ing and is of interest in various application domains ranging
from biomedical engineering to forensics. The INTERSPEECH
ComParE challenge series has a field-leading role, introducing
novel problems with a common benchmark protocol for com-
parability. In this work, we tackle all three ComParE 2016
Challenge corpora (Native Language, Sincerity and Deception)
benefiting from multi-level normalization on features followed
by fast and robust kernel learning methods. Moreover, we em-
ploy computer vision inspired low level descriptor representa-
tion methods such as the Fisher vector encoding. After non-
linear preprocessing, obtained Fisher vectors are kernelized and
mapped to target variables by classifiers based on Kernel Ex-
treme Learning Machines and Partial Least Squares regression.
We finally combine predictions of models trained on popularly
used functional based descriptor encoding (openSMILE fea-
tures) with those obtained from the Fisher vector encoding. In
the preliminary experiments, our approach has significantly out-
performed the baseline systems for Native Language and Sin-
cerity sub-challenges both in the development and test sets.
Index Terms: ComParE, computational paralinguistics, Native
Language, Sincerity, Fisher vector, PLS, ELM

1. Introduction
Computational Paralinguistics, the study of non-verbal aspects
of speech, has developed rapidly over the last decade. While
speech based prediction of non-linguistic phenomena such as
long term diseases and speaker identity had been under investi-
gation earlier, the field flourished particularly around the subject
of emotion recognition [1, 2]. The INTERSPEECH ComParE
events played a prominent role in driving the study into a coher-
ent field; by introducing novel problems, allowing comparabil-
ity as well as repeatability of works. A large set of paralinguis-
tic tasks, including but not limited to emotion [2, 3], speaker
traits [4], conflict and autism [3] and Eating Condition [5] are
investigated in past events. Yet, there is a plethora of other tasks
to be discovered.

INTERSPEECH 2016 ComParE challenge [6] presents
three sub-challenges for predicting Sincerity, Deception Condi-
tion and Native Language of the speaker, respectively. All three
problems can be of important use in law enforcement commu-
nity: e. g. for detecting lies and sincerity of confession regard-
ing the first two; and for forensic purposes regarding the Native
Language Sub-challenge. Moreover, studies in these directions
can better enhance human-computer interaction (HCI) systems,
e. g. the agent can adapt its English ASR depending on the Na-
tive Language of the speaker.

The organizers of the challenge provide a baseline system
composed of a standard set of features and a commonly used
classifier. Both of the system components can be reproduced
via freely available, open source tools [7, 8]. The provided
baseline system is sometimes very hard to outperform (see e. g.
the results of Autism and Emotion Sub-Challenges of ComParE
2013 [3]), showing the success of brute-forced suprasegmental
acoustic features extracted using the openSMILE tool [8]. In-
deed, the tool gives a general purpose feature set that yields
state-of-the-art results in a wide range of paralinguistic prob-
lems. On the other hand, there is also a need for alternative
acoustic feature representations achieving state-of-the-art re-
sults on many paralinguistic tasks.

Motivated by the need to investigate different acoustic fea-
ture representations, in ComParE 2015 we proposed the use
of Fisher vectors (FV) for encoding the low level descriptors
(LLD) over utterances [9]. This super vector modeling is in-
troduced and popularly used in computer vision, especially in
large scale image retrieval [10, 11]. The super vector quantifies
the amount of change induced by the utterance/video descrip-
tors on a background probability model, which is typically a
Gaussian Mixture Model (GMM). The advantage of FV is that
it requires far less number of components in a GMM than the
Bag of Words (BoW) approach [12] and does not require train-
ing on a very-large corpus, as in the case of Universal Back-
ground Model (UBM). FV is not only efficient but also accurate
in encoding. In [9], the FV based method used to recognize the
eating condition of speakers gave the best results, with a large
margin compared to the first-runner up.

Inspired by the success of transferring FV encoding into
speech domain, more specifically paralinguistics, here we seek
to validate its efficiency and robustness in the new challenging
tasks. In this work, we carry out extensive experiments using
the baseline feature set and the FV encoding for comparison
and fusion of their representations/predictions.

Clinging to the efficiency issues also in model learning, we
use Extreme Learning Machines (ELM) [13, 14] and Partial
Least Squares (PLS) regression [15] based classifiers, motivated
by their fast learning capability and outstanding performance in
recent challenges [9, 16, 17].

We present comparative analysis of each component of our
framework. The remainder of this paper is organized as fol-
lows. In Section 2, we introduce the proposed framework and
give background on its major components. The experimental
results are given in Section 3, Section 4 concludes with future
directions.
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Figure 1: Proposed framework with alternative speech signal
representation

2. Proposed Framework
In our approach to all three sub-challenges, we first try to exploit
the given baseline feature set using recently proposed feature se-
lection method [18] and cascaded normalization strategies. We
then apply the proposed FV encoding based alternative frame-
work, which is illustrated in Figure 1. Finally, we fuse the pre-
dictions of models trained on different feature representations
to improve performance.

2.1. Extraction of Acoustic LLDs from Speech

MFCC and RASTA-PLP [19, 20] are the most popular de-
scriptors used in a variety of speech technologies ranging from
speaker identification to speech recognition, although they are
initially designed to minimize the speaker dependent effects.
They are also commonly employed in state-of-the-art paralin-
guistics studies, together with prosodic and voicing related fea-
tures. Although the paralinguistic tasks at hand may well be
enhanced with the use of linguistic model and prosody model-
ing, here we use only acoustic models in all 3 sub-challenges. In
line with our previous work [9], we extract MFCCs 0-24, and
use a 12th order linear prediction filter giving 13 coefficients.
Raw LLDs are augmented with their first and second order
delta coefficients, resulting in 75 and 39 features for MFCC and
RASTA-PLP, respectively. Although they are known to be alter-
native representations, in [9] RASTA-PLP and MFCC features
were not found to be linearly dependent, therefore they have
complementary rather than redundant information. In our pre-
liminary experiments, we observed higher performance with the
frame level combination of these two descriptors. The pipeline
of FV feature extraction is given in Figure 2. Only in the Native
Language Sub-Challenge, where the speech data is about 8GBs,
we had to use only MFCCs due to memory limitations.

Figure 2: Fisher vector encoding based speech signal represen-
tation in the proposed framework

To distinguish the speech and non-speech frames, we use an
energy based voice activity detector. In this approach, frames
with lower energy than a threshold τE are considered to be non-
speech. To smooth the decision boundary, we take the mean

energy in a symmetric window of nine frames, centered at the
frame of interest. As a measure of frame-level energy, we tried
sum of RASTA-style auditory spectrum and MFCC 0 and ob-
served that thresholding MFCC 0 gives more reliable results on
speech signal segmentation.

2.2. Fisher Vector Encoding

The Fisher vector (FV) provides a supra-frame encoding of the
local descriptors, quantifying the gradient of the parameters of
the background model with respect to the data. Given a proba-
bility model parametrized with θ, the expected Fisher informa-
tion matrix F(θ) is the expectation of the second derivative of
the log likelihood with respect to θ:

F(θ) = −E[
∂2 log p(X|θ)

∂θ2 ]. (1)

The idea in FV in relation to F(θ) is taking the derivative
of the model parameters and normalizing them with respect
to the diagonal of F(θ) [10]. To make the computation fea-
sible, a closed form approximation to the diagonal of F(θ) is
proposed [10]. As a probability density model p(θ), GMMs
with diagonal covariances are used. A K-component GMM is
parametrized as θ = {πk, µk,Σk}

K
k=1 where the parameters corre-

spond to zeroth (mixture proportions), first (means) and second
order (covariances) statistics, respectively. It has been shown
that using the zeroth order statistics is equivalent to the BoW
model, however in FV, they have a negligible effect on perfor-
mance [10]. Therefore, only gradients of {µk,Σk}

K
k=1 are used,

giving a 2×d×K dimensional super vector, where d is the LLD
dimensionality.

In order to efficiently learn an Acoustic Background Model
(ABM) using GMM with diagonal covariances, the data need
to be decorrelated. Principal Component Analysis (PCA) is ap-
plied on the data for this purpose. To reduce the computational
cost, we downsample LLDs prior to learning PCA and GMM.
We take every second frame in the Sincerity and Deception SCs;
every third frame in the Native Language SC, respectively.

2.3. Cascaded Normalization

Perronnin et al. proposed to improve the FV representation to
be used in computationally efficient linear classifiers (e. g. Lin-
ear Kernel Support Vector Machines) with power normalization
(POW), followed by instance level L2 normalization [21]. This
simple proposal is empirically verified to be very effective in a
range of computer vision tasks, as well as our recent paralin-
guistic studies [9, 22]. The authors’ argument is that power nor-
malization helps “unsparsify” the distribution of feature values,
thus improves discrimination:

f (x) = sign(x)|x|α, (2)

where 0 ≤ α ≤ 1 is a parameter to optimize. In [21] the authors
empirically choose α = 0.5. Following [9], in this study we also
investigate the suitability of sigmoid function (SIG):

h(x) =
1

1 + exp (−x)
. (3)

This way we avoid a hyper-parameter to optimize, while provid-
ing a non-linear normalization into [0,1] range. The flowchart of
the normalization steps we applied on the baseline openSMILE
features and extracted FVs is given in Figure 3. We use the
combination of feature, value (applied to each value of the data
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matrix separately) and instance level normalization strategies.
Without using feature level normalization, the performance is
poor for the baseline set, while FV encoding may also work
without normalization.

Figure 3: Cascaded feature normalization pipeline

2.4. Model Learning

To learn a classification model, we use Kernel ELM and PLS
regression due to their fast and accurate learning capability.

ELM proposes unsupervised, even random generation of
the hidden node output matrix H ∈ RN×h, where N and h denote
the number of instances and the hidden neurons, respectively.
The actual learning takes place in the second layer between H
and the label matrix T ∈ RN×L, where L is the number of classes.
T is composed of continuous annotations in case of regression,
therefore is a vector. In the case of L-class classification, T is
represented in one vs. all coding:

Tt,l =

{
+1 if yt = l,
−1 if yt , l. (4)

The second level weights β ∈ Rh×L are learned by least squares
solution to a set of linear equations Hβ = T. The output weights
can be learned via:

β = H†T, (5)

where H† is the Moore-Penrose generalized inverse [23] that
gives the minimum L2 norm solution to ||Hβ − T||, simultane-
ously minimizing the norm of ||β||. This extreme learning rule is
generalized to use any kernel K with a regularization parame-
ter C, without generating H [14], relating ELM to Least Square
SVM [24]:

β = (
I
C

+ K)−1T, (6)

where I is the N×N identity matrix. In our experiments, we use
Kernel ELM learning rule given in eq. (6).

PLS regression between two sets of variables X ∈ RN×d

and Y ∈ RN×p is based on decomposing the matrices as X =

UxVx + rx, Y = UyVy + ry, where U denotes the latent factors, V
denotes the loadings and r stands for the residuals. For further
details of PLS regression, the reader is referred to [15]. PLS
is applied to classification in one-versus-all setting between the
feature matrix X and the binary label vector Y, then the class
giving the highest regression score is taken as prediction. The
number of latent factors is a hyper-parameter to tune via cross-
validation.

2.5. Fusion

We investigate feature level fusion, weighted score level fusion
and their multi-level combination. Score level fusion is more
appropriate when different feature representations necessitate
distinct normalization pipelines. On the other hand, when the
preprocessing is similar, combining features is likely to improve
the performance.

In weighted score level fusion, the classifier confidence
scores S A and S B are fused with a weight 0 ≤ γ ≤ 1, searched
with steps of 0.05:

S f usion = γ ∗ S A + (1 − γ) ∗ S B. (7)

The fusion parameter is optimized on the development set, as it
is the case with other hyper-parameters.

3. Experimental Results
The challenge measure for classification based tasks is Un-
weighted Average Recall (i. e. mean recall of all classes). Sin-
cerity SC is a regression task, where the measure is Spearman
correlation.

For ease of reproducibility, we use open source tools in our
experiments. For MFCC and RASTA-PLP feature extraction
we use RASTAMAT library [25], for GMM training and FV
encoding we use MATLAB API of VLFeat library [26]. In all
3 tasks, Fisher vectors are tested with PCA dimensions that ex-
plain 99.9% of the total variability, and KGMM = {64, 128} com-
ponents for GMM. Prior to the experiments with FV, we analyze
the baseline features with cascaded normalization strategies.

3.1. Experiments on the Native Language Sub-Challenge

The task in the Native Language SC1 is to predict L1 from L2
(English speech). It is known that L2 speakers tend to trans-
fer the linguistic and prosodic patterns existing in their native
language. The task of this SC is to classify non-native En-
glish speakers from eleven different native languages: Arabic
(ARA), Chinese (CHI), French (FRE), German (GER), Hindi
(HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish
(SPA), Telugu (TEL), and Turkish (TUR). The baseline devel-
opment and test UAR scores for this SC are 45.1% and 47.5%,
respectively. For other details, please refer to the paper on chal-
lenge [6].

We first carried out tests using combinations of cascaded
normalization with the baseline feature set and PLS/ELM based
classifiers. The best development set results using the baseline
set are obtained using combination of z-normalization (ZN),
sigmoid-normalization (SIG) and L2 normalization, with Ker-
nel ELM as classifier. This scheme gave a development set
UAR score of 51.6% and a test set score of 53.4%. We then
applied Canonical Correlation Analysis based Randomized fea-
ture selection proposed in [18]. The resulting ranking are given
to classifiers in [100, 6300] range with steps of 100 features.
The best results are obtained with 5300 features, which means
an elimination of 1K features. This feature eliminated system
gave 53.7% and 55.3% UAR for development and test sets, re-
spectively.

We then proceed with our proposed FV based framework.
Since the data in this corpus is very large compared to a mod-
erate personal computer, we carried out our preliminary exper-
iments only using 75 dimensional MFCC based LLDs. After
application of PCA, 50 features are retained. Comparative re-
sults with respect to KGMM = {64, 128} GMM components, two
classifiers and best normalization cascaded steps are given in
Table 1. In this table, results of commonly used feature nor-
malization approaches are given in the first part. The second
part summarizes the best four combinations of cascaded nor-
malization approach. Best UAR scores per column are shown

1Source: Derived from data provided by ETS. Copyright © 2016
ETS. www.ets.org. The opinions set forth in this publication are those
of the authors not ETS.
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in bold. Here, we observe that i) employed cascaded normal-
ization boosts the performance as in the case of openSMILE
features and ii) 128 GMM components give better results com-
pared to 64 in FV encoding. In the remaining experiments, we
carry out tests with KGMM = 128.

Table 1: Native Language SC: comparative results using FV
encoding with 50 PCA dimensions on MFCC descriptors.

UAR (%) KGMM=64 KGMM=128
Preprocessing PLS ELM PLS ELM

ZN 60.9 61.3 61.9 62.3
MM 60.6 59.1 61.6 60.8

POW+L2 64.9 64.8 66.8 65.9
ZN+POW+L2 63.1 62.9 65.5 66.8

ZN+SIG 63.2 62.0 65.3 65.0
ZN+SIG+L2 62.5 62.4 64.6 66.4

Weighted score fusion of PLS and ELM using POW+L2

combination of FV encoding (50 PCA dimensions, KGMM=128)
yielded an UAR score of 67.4%. When this FV representation
is combined with the reduced openSMILE feature set, the de-
velopment UAR scores rose to 67.1% and 66.6% for PLS and
ELM, respectively. Further, the score fusion performance in-
creased to 67.6%. This multi-level fusion approach attained a
test set UAR of 71.5%, which outperforms baseline UAR by
50%, relatively.

The corresponding confusion matrix is given in Figure 4,
where we observe the highest confusion between Hindi and Tel-
ugu followed by Italian and Spanish.

Figure 4: Test set confusion matrix in percent (UAR 71.5%)

3.2. Experiments on the Sincerity Sub-Challenge

The Sincerity SC is about predicting the perceived sincerity.
Each recording is rated by 13 to 19 annotators and the average
z-normalized individual scores are taken as ground truth.

In this SC, we applied the same pipeline as mentioned in
the Native Language SC. We found that feature selection does
not generalize well on this corpus, partly due to vagueness of
the target variable. The first test set submission with selected
1280 features rendered a Spearman Correlation of 0.573, falling
behind the baseline score of 0.602. The summary results of
other three submissions that used cascaded normalization on the

full baseline set and score level combination of baseline and FV
based systems are listed in Table 2. FV encoding in this SC
uses MFCC and RASTA-PLP descriptor combination reduced
to 80 PCA dimensions. Our current best test set score (.640),
outperforms the test set 7%, relatively.

Table 2: Development and test set results of proposed systems
for Sincerity SC

Normalization Features Regr. Devel. Test
ZN+SIG+L2 Baseline [6] PLS 0.501 0.613
MM+POW+L2 Baseline+FV:

KGMM=64
ELM 0.569 0.636

MM+POW+L2 Baseline+FV:
KGMM=128

ELM 0.588 0.640

3.3. Experiments on the Deception Sub-Challenge

The Deception SC is a binary classification task. The data is
collected in an empirical study at the University of Arizona. In
the setup, some participants were asked to retrieve an exam key
from a computer in department office, while some others re-
trieved a leaflet. Those who stole the exam key were asked to
tell the truth in one session and to lie in another session, which
provided the deception case. The development and test set base-
line UAR scores are 61.9% and 68.3%, respectively.

Due to the imbalanced nature of the data, baseline system
uses instance upsampling strategy. We implemented the same
strategy in our experiments to avoid bias towards the major-
ity class. Applying feature selection [18] on the upsampled
training set and cross-validating on the development set yielded
much higher performance compared to the baseline. Therefore,
we dedicated 4 of 5 submissions to feature selected systems.
A score fusion of models trained on FV encoding and on the
baseline features was also probed. The best development UAR
score obtained was 75.2% using selected 45 features from IN-
TERSPEECH ComParE 2010 baseline set [27]. However, this
rendered a test set UAR score of 66.6%. Apart from possibil-
ity of over-fitting, there may be a shift in the optimal hyper-
parameters for the combined training and development set.

4. Conclusion
In this work, we propose a framework that combines popular
suprasegmental acoustic features with computer vision inspired
FV encoding and applies multi-level normalization. For the Na-
tive Language SC, proposed framework achieves dramatically
higher performance compared to that of the baseline system.
Using feature and decision level fusion, we attain 50% increase
relative to the baseline test set performance. In the Sincerity SC,
we also get better results with the proposed approach, although
not as dramatic as in the former SC. Given the short time and
high difficulty level of the challenge conditions, using efficient
and robust system components for signal processing and ma-
chine learning is of high importance. The proposed framework
can be further enhanced with linguistic and prosodic modeling,
which constitute our future directions. Furthermore, the pro-
posed framework will be investigated for unsupervised domain
adaptation in cross-corpus acoustic emotion recognition tasks.
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Orozco-Arroyave, E. Nöth, Y. Zhang, and F. Weninger, “The
INTERSPEECH 2015 Computational Paralinguistics Challenge:
Nativeness, Parkinson’s & Eating Condition,” in INTERSPEECH,
Dresden, Germany, Proceedings, 2015, pp. 478–482.

[6] B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon,
A. Baird, A. Elkins, Y. Zhang, E. Coutinho, and K. Evanini, “The
INTERSPEECH 2016 Computational Paralinguistics Challenge:
Deception, Sincerity & Native Language,” in INTERSPEECH,
San Francisco, USA, Proceedings, 2016.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[8] F. Eyben, F. Weninger, F. Groß, and B. Schuller, “Recent De-
velopments in openSMILE, the Munich open-source Multimedia
Feature Extractor,” in Proceedings of the 21st ACM International
Conference on Multimedia. ACM, 2013, pp. 835–838.

[9] H. Kaya, A. A. Karpov, and A. A. Salah, “Fisher vectors with
cascaded normalization for paralinguistic analysis,” in INTER-
SPEECH, Dresden, Germany, Proceedings, 2015, pp. 909–913.

[10] F. Perronnin and C. Dance, “Fisher kernels on visual vocabular-
ies for image categorization,” in IEEE Conference on Computer
Vision and Pattern Recognition, Minneapolis, Minnesota, USA,
Proceedings, 2007, pp. 1–8.

[11] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, “Large-scale
Image Retrieval with Compressed Fisher Vectors,” in 23rd IEEE
Conference on Computer Vision and Pattern Recognition, 2010,
pp. 3384–3391.

[12] J. Sivic and A. Zisserman, “Efficient visual search of videos
cast as text retrieval,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 31, no. 4, pp. 591–606, 2009.

[13] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning ma-
chine: theory and applications,” Neurocomputing, vol. 70, no. 1,
pp. 489–501, 2006.

[14] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learn-
ing Machine for Regression and Multiclass Classification,” Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on, vol. 42, no. 2, pp. 513–529, 2012.

[15] H. Wold, “Partial least squares,” in Encyclopedia of Statistical Sci-
ences, S. Kotz and N. L. Johnson, Eds. Wiley New York, 1985,
pp. 581–591.

[16] H. Kaya and A. A. Salah, “Combining modality-specific
extreme learning machines for emotion recognition in the wild,”
Journal on Multimodal User Interfaces, vol. 10, no. 2, pp.
139–149, 2016. [Online]. Available: http://dx.doi.org/10.1007/

s12193-015-0175-6

[17] F. Gürpınar, H. Kaya, H. Dibeklioğlu, and A. A. Salah, “Ker-
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