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Abstract
As long-form spoken documents become more ubiquitous in ev-
eryday life, so does the need for automatic discourse segmen-
tation in spoken language processing tasks. Although previ-
ous work has focused on broad topic segmentation, detection of
finer-grained discourse units, such as paragraphs, is highly de-
sirable for presenting and analyzing spoken content. To better
understand how different aspects of speech cue these subtle dis-
course transitions, we investigate automatic paragraph segmen-
tation of TED talks. We build lexical and prosodic paragraph
segmenters using Support Vector Machines, AdaBoost, and
Long Short Term Memory (LSTM) recurrent neural networks.
In general, we find that induced cue words and supra-sentential
prosodic features outperform features based on topical coher-
ence, syntactic form and complexity. However, our best perfor-
mance is achieved by combining a wide range of individually
weak lexical and prosodic features, with the sequence mod-
elling LSTM generally outperforming the other classifiers by
a large margin. Moreover, we find that models that allow lower
level interactions between different feature types produce better
results than treating lexical and prosodic contributions as sepa-
rate, independent information sources.
Index Terms: prosody, discourse, segmentation, paragraph, co-
herence

1. Introduction
Spoken presentations, such as video lectures, are becoming in-
creasingly common sources of information. These audio docu-
ments often contain long spoken passages which are difficult to
effectively browse and analyze without some notion of internal
discourse structure. Previous studies on automatically detecting
this sort of structure have tended to focus on broad topic or story
level segmentation. However, fine-grained discourse segments,
such as paragraphs, are also desirable for processing spoken lan-
guage. From a browsing perpsective, paragraph segmentation is
valuable for summarization [1] as well as improving readability
of transcripts [2]. From a language understanding perspective,
they provide a good test case for teasing out how subtler transi-
tions in discourse structure are signalled using different aspects
of speech. However, even though paragraph breaks are more
readily available than other discourse structure annotations in
the wild, little work has been done on automatic paragraph seg-
mentation in text besides [1], let alone speech.

To address this gap, this paper investigates paragraph seg-
mentation in a large corpus of TED talks.1 In particular, we
examine how lexical and prosodic features that help high level
topic segmentation work at the paragraph level. Lexically based
topic segmentation generally revolves around similarity-based

1http://www.ted.com

notions of lexical coherence. In the much used TextTiling algo-
rithm, for example, topic boundaries are determined by identi-
fying points of low lexical similarity between consecutive win-
dows in a text [3]. This basic approach has been improved
by employing more abstract vector representations of the text
[4, 5]. Other approaches, e.g. BayesSeg [6], further improve
on this by modelling observed word distributions and segment
boundaries via a Bayesian generative process on topics. While
these word frequency based methods work for story level topic
changes, performance worsens on spoken language [7], with a
marked drop in performance for subtopic detection [8]. This
suggests that we should look to other discourse oriented lin-
guistic cues to obtain finer-grained segmentations.

Prime candidates for discourse structural markers are cue
words and speech prosody [9]. Cue words such as ‘because’,
‘well’, and ‘okay’ have been associated with a broad range of
functions related to discourse coherence [10, 11], and inclusion
of cue word based features generally improves higher-level seg-
mentation [6, 8, 12]. Similarly, prosodic features based on pitch,
energy and timing have been used to perform topic segmenta-
tion on their own [13, 14, 15] or in conjunction with lexical
features [8, 12, 16, 17]. While pause duration appears to be the
most robust segmentation cue, paragraphs also seem to follow
general prosodic declination and reset patterns [18]. So, we ex-
pect prosody to be informative of paragraph breaks.

While cue words and prosody are clearly helpful for seg-
mentation tasks, how they can be best utilized is still an open
question. Previous work incorporating lexical and prosodic fea-
tures has suggested that they contribute independent evidence
and, thus, can be modelled separately [16]. However, intona-
tional analyses suggest that the prosodic form of lexical cues
can also be important for interpretation [19]. In fact, combin-
ing individually weak lexical signals using AdaBoost improves
text paragraph segmentation [1]. So, to take advantage of vari-
ous subtle lexical and prosodic cues, we may need to combine
evidence from different feature types at a relatively low level.

In the following, we investigate the predictiveness of cue
words and supra-sentential prosody, compared with lexical co-
herence based features. As a baseline, we also examine the pre-
dictiveness of lexical features used by [1] for text segmentation.
Our hypothesis is that discourse cues such as prosody and cue
words are better indicators of paragraph breaks than traditional
textual similarity or complexity measures. Beyond this we ex-
pect that modelling sequential information will improve perfor-
mance, and that allowing low level interactions between lexi-
cal and prosodic features will produce better results than mod-
elling these information sources separately. To test these hy-
potheses, we compare results from experiments using Support
Vector Machines (SVMs), AdaBoost decision tree ensembles,
and Bi-directional Long Short Term Memory (BLSTM) recur-
rent neural networks.
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2. Experimental Setup
2.1. Data

In the following, we build paragraph boundary detectors based
on a set of 1365 TED (Technology, Entertainment, Design) talks
published before 2014. Talks are 15 minutes long on average
and vary greatly in content and style. Most talks have one main
speaker, although guests and audience members occasionally
speak in some talks. The data set includes 1156 speakers of En-
glish with various accents, so that some of the speakers present
more than one talk. Each talk is manually transcribed includ-
ing punctuation and paragraph breaks. While there are no hard
rules for determining paragraphs, transcribers attend to the au-
dio stream when determining paragraph breaks.2

Altogether, the data set includes 151820 sentences and
20953 paragraphs, with an average of 7 sentences per para-
graph. We obtain word timings through Viterbi forced align-
ment using an automatic speech recognition system. Sentences
are detected based on punctuation using the Stanford CoreNLP
sentence splitter [20]. We use the same toolkit to obtain Part-
of-Speech (POS) tags, parse trees, and co-reference informa-
tion. Word timings are then used to assign sentence boundary
times. Given the aligned transcript, we extract various lexical
and prosodic features as described in the following and summa-
rized in Table 1.

2.2. Prosodic Features

F0 and intensity contours were extracted using Praat at 10 ms
intervals with linear interpolation and octave jump removal for
F0 [21]. For F0, parameter settings were automatically deter-
mined using the method described in [22]. F0 and intensity
values were normalized over talks so that zero values repre-
sent speaker mean values: intensity measurements were nor-
malized by subtracting the speaker mean for the talk, while F0
values were converted to log-scaled (semitone) values relative
to speaker mean F0 value (Hz) to better fit pitch perception.

Based on previous analysis of paragraph prosody [18], we
calculated aggregate statistics for each sentence: mean, stan-
dard deviation, maximum, minimum, median, slope, range
(99th-1st quantiles). We also record the values for the previ-
ous and next sentences, as well as their differences to the target,
and the difference between the first and last word of the target.
For timing features (dur), we include the duration of the utter-
ance, the number of words, the speaking rate (words/s), and the
pause durations before and after the target sentence.

2.3. Lexical Baseline and Cue Words

We extract features based on those used for paragraph segmen-
tation of texts in [1]. The features fall into three categories:
surface form, syntactic form, and language model based com-
plexity features. We also look at the predictiveness of POS tags
[23]. Language models were estimated on training data using
KenLM (1 to 5-grams) [24]. As in [1], these were used to es-
timate average word entropy and sentence probabilities. The
individual features are listed in Table 1 (see [1] for details).

From these features we identify cue word related features.
We record the first three words of the sentence (w123, 1-hot
encoding). We also include binary indicators for the presence
of any cue phrases at beginning, middle and end of the sentence
from the list in [11] (cwk). We are specifically interested in

2p.c. TED translation team.

Features
dur no. words, speaking rate, duration,

prev/next pause durations
prosody F0, intensity: mean, sd, max, min, slope, range

for target, prev, next sentence,
prev/next differences, dur

w123 1st, 2nd, 3rd word indicators (freq > 100)
cwk Knott [11] cue word at start, middle, end?
lm average word entropy, sentence probability
syntax no. phrases, parse tree top level children,

branching factor, tree depth, cwk
pos part-of-speech tag counts
bow bag of words indicators
cw w123, cwk
surface no. words, relative position, final punctuation

quote in previous, quote in target,
quote incomplete, bow, w123

lex.base pos, surface, lm, syntax
lex.coh LDA, LSA, TF.IDF: target.sim, dscore,

prev.sim, next.sim, lexical chain scores:
lc.lemma, lc.sw, lc.gt1, lc.entity

lex.all lex.coh, lex.base

Table 1: Sentence level feature set guide.

the performance of these cue word encoding features relative to
bag-of-words features over the entire sentence (bow).

2.4. Lexical Coherence

To examine the performance of lexical coherence measures, we
look at differences in topical and lexical similarity around po-
tential boundary points based on Latent Dirichlet Allocation
(LDA), Latent Semantic Analysis (LSA), and TF.IDF represen-
tations of the transcript. LDA and LSA models (100 topics)
were trained on the whole dataset using gensim [25]. In the
modelling stage, individual talks were treated as documents.
The words in each document were lemmatized and words that
occurred in more than half of the talks were excluded. Numeric
vector representations were assigned to individual sentences us-
ing these models (100 dimensional vectors for LDA and LSA,
51503 dimensions, i.e., the vocabulary size, for TF.IDF).

As in TextTiling [3], we obtain similarity scores by sum-
ming sentence vectors falling inside the fixed windows before
and after the target sentence, and then calculating the cosine
similarity between these two vectors. We record the (moving-
average) smoothed similarities (target.sim) as well as Texttiling
depth scores (dscore). The latter measures the relative differ-
ence between the current similarity score and the closest ’peaks’
in similarity to the left and right of the target sentence. A win-
dow size of 3 was used based on initial experiments using Text-
Tiling for paragraph segmentation. We also include the cosine
similarity of each sentence vector to the previous and next sen-
tence for a more local measurement of lexical change (prev.sim,
next.sim).

Besides topic model based features, we also measure co-
herence based on lexical chains. We calculate lexical chain co-
hesion scores by looking at the similarity at sentence breaks in
terms of the lexical chains that span that boundary rather than
lexical items in the surrounding windows. As in [12], chains
are weighted by their inverse document frequency. We include
separate features for chains based on all lemmas (lc.lemma),
lemmas that occur more than once (lc.gt1), non-stopword lem-
mas (lc.sw), and chains based on automatically detected co-
reference relations (lc.entity).
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2.5. Evaluation Metrics

To evaluate our results we use standard discourse segmenta-
tion metrics: Pk [26] and WindowDiff (WD) [27]. Both met-
rics measure segmentation error using a sliding window (size
k) through a document. For Pk, a penalty of 1 is added if a
boundary is predicted for a no-boundary window or vice versa.
For WD, a penalty of 1 is added if the predicted number bound-
aries does not match the ground truth. The summed penalties
are normalized by the total number of windows to produce an
error probability, with 0 indicating a perfect segmentation.

These standard metrics are known to be biased towards seg-
mentations with very few predicted boundaries or edge clump-
ing. Thus, following [28], we also report k-κ, a version of Pk

which is explicitly corrected for chance agreement. We also ex-
tend the document sequence with k-1 zeros (no boundary) at
either end to ameliorate the edge bias problem. We use k=3
following the standard practice of using half the average seg-
ment length for the dataset. For k-κ, scores of -1, 0, and 1
represent perfect disagreement, chance and perfect agreement
respectively.

2.6. Classifiers

For reference, we provide results based on widely used unsuper-
vised segmentation methods: BayesSeg [6] on raw text input,
and TextTiling based on sentence bag of words. In both cases
we allow the segmenter to automatically determine the number
of boundaries. We also use TextTiling with prosodic sentence
vectors and lexical chain scores. To help interpret Pk, WD and
k-κ values, we give results for random and majority class seg-
mentations [28]. To compare with the supervised approach of
[1], we build classifiers using AdaBoost with Decision Tree es-
timators [29]. We also give results for linear SVMs [30] (cf.
[18]). Both classifiers were built using Scikit-Learn [31].

To model sequential effects related to paragraph structure
we also built LSTM recurrent neural network models [32], im-
plemented using Keras [33] and Theano [34, 35]. Since features
of interest potentially occur on both sides of a boundary, we
use a single bi-directional LSTM layer to model the sequence
both forward and backward in time, feeding into a softmax out-
put layer (Figure 1a). Network parameters are optimized using
AdaGrad with respect to cross-entropy loss. To prevent over-
fitting we include a dropout layer which randomly sets 30% of
the hidden unit outputs to zero during training, and early stop-
ping based on validation set loss. For training sequence input
we use a centered window around a target sentence. We use
predictions for all sentences in the window when calculating
training and validation losses. However, we only consider the
center target sentence output for our test set results. This was
done based on early experiments that showed small windows
provided better performance than using the whole talk sequence
as input. This suggests that the relevant features for this sort of
linear segmentation are relatively local. For brevity we only
report results for window size 3.

We investigate lexical and prosodic feature fusion at dif-
ferent levels by modifying the BLSTM architecture as shown
in Figure 1. The default mode is to concatenate all features as
input to a single BLSTM (feature fusion). The other extreme
is to train separate lexical and prosodic BLSTMs, adding an
extra softmax layer to make the final decision on their sepa-
rate class probability estimates (decision fusion). An intermedi-
ate version combines hidden outputs from separate lexical and
prosodic BLSTM models before making the final decision (in-
termediate fusion, cf. score fusion in [36]).

Figure 1: BLSTM feature fusion at different levels.

Classifier Pk WD k-κ
Majority (no boundary) 0.41 0.41 0.00
Random 0.45 0.50 0.03
TextTiling+lc.gt1 0.44 0.45 0.01
TextTiling+bow 0.44 0.45 0.07
TextTiling+prosody 0.44 0.46 0.10
BayesSeg 0.39 0.47 0.18

Table 2: Unsupervised baseline results.

In the following, we discuss results from 10-fold cross val-
idation with roughly 80/10/10 train, validation and test parti-
tions. Model parameters for the different classifiers were tuned
using validation set results from cross-validation.

3. Results
3.1. Unsupervised Baseline Experiments

Table 2 shows results for paragraph segmentations based on our
unsupervised baselines. Interestingly, prosodic features pro-
vided the best performance out of our TextTiling variants for
k-κ. Lexical chain based scores did not perform well with
even the best chain source (lemmas occurring more than once)
only performing a little above the random baseline. Overall,
the Bayesian topic modelling approach (BayesSeg) performed
the best in terms of k-κ and Pk. However, the poor WD score
reflects a large number of false positives.

3.2. Supervised Classification Experiments

Table 3 shows the classification results for BLSTM models. In
general, we see that the feature combinations perform better
than their individual parts. For example, including features for
both sentence initial words (cw) with the whole sentence bag of
words (bow) produces better results than either set alone. Both
of these feature sets give much better performance than the lex-
ical coherence scores (lex.coh). This suggests that, unlike the
coarser topic segmentation scenario, specific words or phrases
are better indicators of paragraph boundaries than traditional
lexical/topical similarity measures. In fact, when cw and bow
features are removed from the surface set k-κ drops to 0.12.

Since the bag of words includes all words in the sentence,
we also see that positional information is important beyond lex-
ical identity. Word identity also seems more useful for this
task than syntactic (syntax), part-of-speech (pos) and language
model (lm) features. Even though these categories can encode
some discourse related information, they are more useful in
combination with other features. The same observation can be
made for the prosodic features. That is, while pause duration
is one of the stronger individual predictors of paragraph breaks,
the combined prosodic feature set provides much better perfor-
mance. Adding the low-performing coherence features to lex-
ical features suggested in [1] makes an improvement (lex.base
vs lex.all). Overall, our best results come from the full combi-
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Feature set Pk WD k-κ
dur 0.38 0.39 0.13
prosody 0.34 0.36 0.21
lm 0.40 0.40 0.04
syntax 0.37 0.39 0.11
surface (-cw-bow) 0.37 0.39 0.12
pos 0.36 0.38 0.13
bow 0.36 0.38 0.17
cw 0.35 0.37 0.17
surface 0.33 0.36 0.24
lex.coh 0.38 0.39 0.10
lex.base 0.32 0.35 0.25
lex.all 0.31 0.34 0.28
cw+bow 0.34 0.37 0.21
cw+prosody 0.31 0.34 0.28
lex.all+prosody 0.30 0.33 0.31

Table 3: BLSTM results for different feature sets: lower values
are better for Pk and WD, higher values are better for K-κ.

Feature set SVM AdaBoost BLSTM
dur 0.10 0.13 0.13
prosody 0.11 0.19 0.21
lm 0.00 0.09 0.04
syntax 0.02 0.02 0.11
pos 0.02 0.02 0.13
bow 0.08 0.09 0.17
cw 0.09 0.07 0.17
surface 0.11 0.14 0.24
lex.coh 0.07 0.10 0.10
lex.base 0.13 0.16 0.25
lex.all 0.14 0.17 0.28
cw+bow 0.10 0.09 0.21
cw+prosody 0.13 0.21 0.28
lex.all+prosody 0.17 0.26 0.31

Table 4: Supervised classification: k-κ results for SVM, Ad-
aBoost, BLSTM models.

nation of lexical and prosodic features (lex.all+prosody). That
is, composing features at a low level gives us a stronger overall
signal about discourse segmentation.

Table 4 shows k-κ results for BLSTM, AdaBoost, and SVM
classifiers. Overall, AdaBoost performs better than the SVMs
except with respect to cw based models. This once more sug-
gests that combining various weak signals is necessary for this
task. Again, we obtain the best performance from the full fea-
ture set for each classifier. However, it seems that the deci-
sion tree based AdaBoost gets more out of prosodic features
than lexical features: the prosody-only AdaBoost classifier per-
forms better than using all lexical features, and similarly, the
duration model provides better results than the cw+bow model.
Adding additional prosody and coherence features improves
over lex.base (cf. [1]) by 10% absolute. The BLSTM classifiers
generally perform better than AdaBoost over the different fea-
ture sets. These improvements show that sequence modelling is
useful for this task, even when the sequences are short.

3.3. Incorporating Lexical and Prosodic Features

The results above are given for models which concatenate all
features in a single input layer. Results for BLSTM models
with fusion of lexical and prosodic features at different levels
are shown in Table 5. We found that allowing feature level fu-
sion performed better than simply combining class probabilities

Model Pk WD K-κ
blstm:decision 0.31 0.34 0.27
blstm:feature 0.30 0.33 0.31
blstm:intermediate 0.30 0.32 0.32

Table 5: Feature fusion at different levels.

for separate lexical and prosodic models (decision level fusion).
However, our best results come from the model where we train
separate lexical and prosodic BLSTMs but concatenate the hid-
den layer outputs from these models to make the final decision
(cf. Figure 1b). This shows that some amount of abstraction
based on different feature sources may be helpful, but we don’t
want to treat lexical features and prosody as completely inde-
pendent information sources.

4. Discussion and Conclusions
Beyond building a paragraph segmenter for speech, our goal
is to better understand how linguistic devices are used to cue
discourse structure in speech. The experiments described above
confirmed our initial hypothesis that cue word and prosodic fea-
tures are better indicators of paragraph structure than topical co-
herence measures. However, we can improve performance by
allowing interactions between many individually weak lexical
and prosodic signals. AdaBoost can do this to some extent, but
BLSTMs go further by integrating sequence information, albeit
with very small sequences in this case. The overall improved
performance of the BLSTM can be attributed to being able to
perform more informative composition across linguistic feature
types and across time. Further work will look at expanding the
contextual information available in the AdaBoost setup.

For the BLSTM models, the fact that we obtained better
results using small windows rather than the full talk sequences
suggests that short range dependencies are most important for
this task. In fact, previous studies have suggested that the most
useful prosodic features for segmentation are very close to the
boundary [13]. However, segmentation results are still far from
perfect, so further investigation into modelling long range de-
pendencies is warranted. The current approach is likely limited
by the amount of training data used. Future work will look at
incorporating more data sources, as well as examining deeper
BLSTM models and the contributions of forward and backward
LSTM components. Framing the problem as a joint sentence
and paragraph segmentation task may also help us incorporate
useful sub-sentential prosodic and lexical knowledge more ef-
fectively. We also plan to look at topline human agreement on
paragraph segmentation, and to extend this work to ASR output.

Although this paper only deals with linear segmentation,
discourse structure is well understood to be hierarchical and
multifaceted [37, 38]. While cue words have mostly been in-
vestigated as rhetorical connectives, they are also important for
signalling hierarchical topic related structure [19]. Thus, we
plan to investigate the relationship between cue words, prosody,
and hierarchical structure in order to improve our segmentation,
and to better shed light on the relationship between topic and
rhetorically based notions of discourse structure.
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