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Abstract
In this work we utilize a supervised acoustic model training
pipeline without supervision to improve Dirichlet process Gaus-
sian mixture model (DPGMM) based feature vector clustering.
We exploit methods common in supervised acoustic modeling
to unsupervisedly learn feature transformations for application
to the input data prior to clustering. The idea is to automatically
find mappings of feature vectors into sub-spaces that are more
robust to channel, context and speaker variability. The need of
labels for these techniques makes it difficult to use them in a
zero resource setting. To overcome this issue we utilize a first
iteration of DPGMM clustering to generate frame based class
labels for the target data. The labels serve as basis for learn-
ing an acoustic model in the form of hidden Markov models
(HMMs) using linear discriminant analysis (LDA), maximum
likelihood linear transform (MLLT) and speaker adaptive train-
ing (SAT). We show that the learned transformations lead to
features that consistently outperform untransformed features on
the ABX sound class discriminability task. We also demon-
strate that the combination of multiple clustering runs is a suit-
able method to further enhance sound class discriminability.
Index Terms: acoustic unit discovery, Bayesian nonparamet-
rics, Dirichlet process, feature transformation, Gibbs sampling,
unsupervised linear discriminant analysis, zero resource

1. Introduction
In a zero resource scenario, large amounts of labeled training
data, parallel data, and knowledge about the target language are
unavailable for developing speech processing systems with su-
pervised techniques. Albeit significant advances in developing
methods for unsupervised learning, current speech processing
technology is not yet capable to imitate the natural capacities
of infants to robustly learn acoustic and language models in an
unsupervised way. Specialized evaluations such as the zero re-
source speech challenge [1] address this demanding task.

Confronted with an unknown language, phonologists usu-
ally attempt to define a set of acoustic units to fully cover the
underlying sound repertoire. Machine learning approaches to
this task are pattern matching [2, 3] on raw audio data and unsu-
pervised sound unit detection [4]. These techniques have been
successfully applied to solve tasks such as spoken term detec-
tion [5], topic segmentation [6] or document classification [7].

Model complexity usually is not known a priori when deal-
ing with new data sets. Bayesian models such as the Dirichlet
process Gaussian mixture model (DPGMM) can automatically
adjust the model complexity given some data and have already

been successfully applied to speech processing tasks such as un-
supervised lexical clustering [8]. Chen et al. [9] cluster standard
MFCC speech features by inferring a DPGMM and demonstrate
its suitability for automatic detection of sound classes in untran-
scribed data. Their work is the best-performing contribution to
the zero resource speech challenge 2015 [1].

Speech processing systems typically utilize feature trans-
formations to increase sound class discriminability. Linear dis-
criminant analysis (LDA) [10] is a standard technique to min-
imize intra-class discriminability, to maximize inter-class dis-
criminability and to extract relevant informations from high-
dimensional features spanning larger contexts. Maximum like-
lihood linear transforms (MLLT) [11, 12] and feature-space
maximum likelihood linear regression (fMLLR) [13, 14] are
commonly used to de-correlate feature components and for
speaker adaptation. Naturally, class discriminating properties
are critical for clustering, and adaptive feature transformations
can help dealing with speaker variability. However, methods
such as LDA need class labels for estimating the feature trans-
formations, making it difficult to use them in a zero resource
setting where the classes and even their amount are unknown.

In previous work [15] we demonstrated that it is possible
to learn LDA transformations on automatically generated la-
bels, and that these transformations can be used to produce fea-
ture vectors that considerably improve clustering performance.
There has been work that utilize k-means clustering to automat-
ically obtain pseudo labels for LDA estimation [16, 17]. But
unlike in these studies we were able to overcome the limitation
of having to predefine the size of prospective label sets by uti-
lizing the non-parametric DPGMM sampler for clustering.

In this work we improve the DPGMM clustering by utiliz-
ing multiple feature transformations that can be combined with
the previously exploited LDA transformations. Labels that were
automatically generated in a first pass of DPGMM clustering
serve as basis for learning an acoustic model using LDA, MLLT
and fMLLR in an entirely unsupervised fashion. We demon-
strate that each feature transformation helps improve cluster
quality and that the conjunction of transformations leads to the
best results. We also demonstrate that combining multiple clus-
tering runs can greatly boost sound class discriminability.

2. Dirichlet process Gaussian mixture
model

DPGMMs (also known as infinite GMMs) extend finite mixture
models by the aspect of automatic model selection: The model
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finds its complexity automatically given the data. Inference
is typically sample based using a Markov chain Monte Carlo
(MCMC) scheme such as Gibbs sampling. The sampler used
here combines a restricted Gibbs sampler with a split/merge
sampler. For more in-depth informations, please refer to [9, 18].

2.1. Generative process

LetX = {x1, · · · , xn} be a set of observations. The generative
process of X given a DPGMM is as follows:

• Mixing weights π = {π1, · · · , πk} are generated ac-
cording to a stick-breaking process

• GMM parameters θ = {θ1, · · · , θk} are generated ac-
cording to a prior distribution NIW(mk, Sk, κk, νk)

• A label zi is assigned to every xi, according to π

• xi is generated according to the zi-th GMM component
θk = {µk,Σk} are Gaussian parameters, and the parameter set
of the prior Normal-inverse-Wishart (NIW) distribution consists
of a prior m0 for µk, a prior S0 for Σk, the belief-strength κ0

in m0 and the belief-strength ν0 in S0.

2.2. Inference

The parallelizable sampler alternates between a non-ergodic re-
stricted Gibbs sampler and a split/merge sampler to form an
ergodic MCMC sampler.

Restricted Gibbs sampling allows labels zi to be sampled
from a finite set Z. By definition of the DPGMM, the distribu-
tion of the mixture weights follows a Dirichlet distribution.

Split/merge sampling performs on the existing compo-
nents. To provide good split candidates, each component is
augmented with two sub-clusters ckl and ckr , and each obser-
vation of a component is augmented with a sub-cluster label
zsubi ∈ l, r. Split moves are proposed in a Metropolis-Hastings
fashion. Merge steps are proposed randomly.

2.3. Posteriorgram generation

The posterior probability of cluster ck, given observation xi is

p(ck|xi) =
πkN(x|θk)∑
N(x|θj)

(1)

and pi = (p(c1|xi), · · · , p(cK |xi)) is the posteriorgram for xi.

3. Unsupervised speech feature
transformation

We showed in [15] that the quality of DPGMM based speech
feature vector clustering can be improved by using LDA trans-
formed features as input, where the LDA transformations were
estimated in an unsupervised fashion. To further improve the
clustering quality we propose an extension to this work by uti-
lizing transformations that can be used in conjunction to benefit
from additive effects. The transformations help to project fea-
ture vectors into a more suitable sub-space for sound class dis-
crimination by feature de-correlation and speaker adaptation.

The need of labels and models makes it difficult to use these
methods in a zero resource setting out of the box. Not only are
there no labels for the target data available, but class identities
and even the amount of classes are also unknown. Confronted
with an unknown language there is often no easy way to boot-
strap acoustic models. In order to overcome these issues, we
use a two-staged clustering framework that automatically finds
frame-based class labels in a first clustering of the target data.
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Figure 1: Scheme of the iterative sampling process.

3.1. Two-stage clustering

An initial DPGMM clustering on standard feature vectors with
derivatives (x′′i ) provides generic class labels and the hypoth-
esized class membership of every speech frame. Each class is
simply named with the numeric ID of the Gaussian that most
likely produced the respective feature vector.

The frame-wise labels serve as basis for the subsequent
model training. For each utterance, we collapse the labels to ap-
proximate a more natural textual reference type by compressing
all subsequent tokens of the same type to a single token, imitat-
ing a phone based transcription of the audio recordings.

Figure 1 is a graphical overview of the iterative acoustic
model training and clustering pipeline. Once we extract new
feature vectors yi using one or more of the transformations in
conjunction, we perform another run of frame-based DPGMM
clustering. Stages at which we extract the posteriorgrams for
evaluation are named ABX scoring. Each stage produces a more
advanced set of features for clustering, ranging from untrans-
formed features to LDA+MLLR+fMLLR transformed features.

3.2. Supervised acoustic model training

We initialize the acoustic model by context-independent mono-
phone training. Then we subsequently train context dependent
triphones on untransformed standard features, followed by LDA
and MLLT estimation and model training on transformed fea-
tures. Finally, we train a SAT model with fMLLR.

We use a 3-state HMM topology with a skip from the first
state to the next HMM to allow a more dynamic alignment. Due
to the nature of the automatic labels, some utterances might be
represented with a relatively high number of tokens. The skip
state guarantees that an alignment is always found.

3.2.1. Dimension-reducing LDA

LDA is a simple linear transformation that we use to minimize
intra-class discriminability and maximize inter-class discrim-
inability of the speech features. LDA also enables us to do
dimensional reduction of high-dimensional stacked feature vec-
tors (x̂i) that span a larger context c by omitting lower-ranked
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coefficients. Estimation of the transformation requires the fea-
ture vectors and respective class labels. In our pipeline we learn
LDA transformations using the acoustic states as classes.

3.2.2. De-correlating MLLT

We attempt to apply MLLT to feature vectors so that corre-
lations between the feature vector components are captured.
MLLT is computed for distributions of speech observations in
the HMMs of speech recognizers. The state-dependent trans-
formations are estimated so that the likelihood of the adaptation
data is maximized. We learn the transformations given the ini-
tialized HMMs of our unsupervisedly trained acoustic model.

3.2.3. Speaker-adapting fMLLR

fMLLR is an algorithm for speaker adaptive training (SAT). The
idea of SAT is to capture inter-speaker variability in speaker de-
pendent transforms and to generate speaker independent state
distributions instead. The transformations are estimated based
on alignments with speaker-independent features so that the
likelihoods are maximized. We apply fMLLR in this zero re-
source setting because we expect the transformations to help
eliminate variance caused by multiple speakers.

4. Clustering combination
For further improvement of the DPGMM clustering quality we
developed a method to combine the results of n clustering runs,
which are sets of posteriorgrams. For each frame, we add to-
gether the n individual posteriorgrams and normalize the new
vectors so that they form proper posteriorgrams again.

Because the amount of found classes differs for each clus-
tering run, a mapping between any two sets of posteriorgrams is
needed. Given n sets of posteriorgrams, we randomly pick one
of these sets as target set, and consider all other sets as source
sets. We use the numeric frame-wise class labels as transcrip-
tions for our data. For each source/target pair we first align the
transcriptions and count the co-occurrences of classes. Then we
keep the single most probable “translation” for each class and
map the posteriorgrams into the target space as shown by the
example in Figure 2.

Algorithm 1 Combination of dynamically sized posteriorgrams
Require: Set P = {P1, · · · , Pn} of sets of posteriorgrams
Ensure: Combined posteriorgrams P̂

1: ptgt ← random set from P
2: ltgt ← generate labels from posteriorgrams ptgt
3: P̂ ← ptgt
4: for all psrc ∈ P \ ptgt do
5: lsrc ← generate labels from posteriorgrams psrc
6: count symbol pair occurrences in align(lsrc, ltgt)
7: m← 1-best mapping for all symbols in unique(lsrc)
8: P̂ ← P̂+ map(psrc, ptgt, m)
9: end for

10: P̂ ← normalize P̂

Posteriorgram from source set:
Class labels from source set:

1-best map:

Class labels mapped to target set:
Posteriorgram in target space:

(0.00, 0.01, 0.15, 0.70, 0.09, 0.00, 0.04)
      0,     1,      2,     3,      4,     5,      6
      2,     0,      1,     1,      3,     5,      4

      0,     1,      2,     3,      4,     5
(0.01, 0.85, 0.00, 0.09, 0.04, 0.00)

Figure 2: Example of a posteriorgram mapping.

5. Experiments
5.1. Data

The database for all our experiments is the official data set of the
Interspeech zero resource speech challenge [1], which contains
two separate data sets of pure speech for American English (4h
59min) and Xitsonga (2h 29min), a southern African Bantu lan-
guage. The segments contain non-overlapping speech of exactly
one speaker and noise or pauses. The English data is extracted
from the Buckeye corpus and consists of conversational speech.
The Xitsonga data is an excerpt of the NCHLT corpus and is
comprised of read speech.

5.2. Evaluation

The evaluation metric we use to measure the cluster qual-
ity is based on the minimal pair ABX phone discriminability
task [19], which is related to the ABX task used in psycho-
physics [20]. Each cluster is considered a phone in the context
of the evaluation. We score GMM posteriorgrams that are com-
puted for each speech frame after clustering, as described in
Section 2.3. Let A and B be stimuli belonging to sound cate-
gories a and b. The ABX phone discrimination accuracy is

c(a, b) =
1

|a| · |b| · (|a| − 1)

∑
A∈a

∑
B∈b

∑
X∈a\{A}

(δd(A,X)<d(B,X) +
1

2
δd(A,X)=d(B,X)) (2)

where d(a, b) is the dynamic time warping (DTW) divergence
and δ is an indicator function. As in Schatz et al. [19], we use
the Kullback-Leibler divergence to compute the DTW diver-
gences. Our scores are the error rates within and across speak-
ers. The rates are averaged over all contexts for a given pair of
central phonemes and then over all pairs of central phonemes.

5.3. Setup

We utilize the Kaldi speech recognition toolkit [21] to train the
acoustic model used in our framework by following a standard
scheme for speaker adaptive training.

We use the same parameters than Chen et al. [9] to ensure
comparability. DPGMM sampling is done for 1500 iterations,
and the priors are set so that m0 is the global mean, S0 is the
global covariance, κ0 = 1, and α = 1. The value of ν0 slightly
varies and is set to the toolkit’s default of ν0 = D + 3, where
D is the dimension of the input feature vectors. All feature vec-
tor types are extracted for a frame length of 25msec and frame
shift of 10msec. Mean variance normalization (MVN) and vo-
cal tract length normalization (VTLN) is applied.

5.4. Baseline

For our baseline we extract 39 dimensional MFCC+∆+∆∆ as
input to the DPGMM sampler. We also compare to the results of
Chen et al. [9] as reference due to the identical clustering setup.
The details are listed in Table 1. Despite using the same sam-
pling setup and input feature types, there is a mismatch between
the results of Chen et al. [9] and our baselines. We believe this
mismatch is caused by the fact that Chen et al. uses a custom
voice activity detection for segmenting the full 10 hours of En-
glish data and does not mention any segmentation attempts for
the 5 hours of Xitsonga data, where we use the officially pro-
vided segmentation that limits both data sets to about half the
amount. Due to the differences we start with a higher error rate
on English, but a lower error rate on Xitsonga.
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English Xitsonga
Features within across within across
MFCC+∆+∆∆ ([9]) 10.8 16.3 9.6 17.2
MFCC+∆+∆∆ ([15]) 12.2 19.5 8.9 14.2
PLP+∆+∆∆ 11.8 19.6 8.5 13.9
PLP+LDA 10.5 16.1 8.3 12.8
PLP+MLLT 10.5 16.2 8.4 12.9
PLP+MLLT+fMLLR 10.6 15.7 8.4 12.2
Best combination 10.0 14.9 8.1 11.7

Table 1: The optimal results for each input feature type.

5.5. Untransformed features

In our previous work [15] we found that PLP feature vectors are
consistently leading to a higher clustering quality than MFCC
feature vectors. We therefore conducted all clustering experi-
ments based on this feature type.

5.6. Dimension-reducing LDA

The LDA transformation takes stacked standard feature vectors
without their derivatives as input. Following our findings in [15]
we fix the stacking context parameter set to c = 4, and the out-
put dimensionality to d = 20. With the application of LDA we
were able to produce feature vectors that considerably helped
the DPGMM clustering process to find better clusters. The
error rates for both languages dropped consistently, and espe-
cially across speakers a clear performance boost is observable.
LDA features outperform our own baseline and also undercut
the numbers of Chen et al. [9], thus compensating for the deficit
in the baseline numbers that we had to begin with.

5.7. De-correlating MLLT

Applying MLLT to the LDA transformed features did not lead
to a better clustering quality. This lets us assume that the de-
correlating effects might not be able to aid this particular task,
albeit being useful during a decoding task, as experience shows.

5.8. Speaker-adapting fMLLR

The transformations learned with fMLLR during the speaker
adaptive acoustic model training prove to be very useful for
boosting the discrimination capabilities across speakers. A rel-
ative improvement of 3% for English and almost 6% for Tsonga
proves that fMLLR based speaker adaptive transformations can
considerably improve clustering quality in the face of speaker
variations and greatly benefit the clustering task.

5.9. Posteriorgram combination

We tested combining several clustering results across (a) trans-
formations, (b) features, (c) LDA input and (d) output dimen-
sionalities, and (e) given multiple identical clustering runs. The
results are plotted in Figure 3.

For the combination across transformations, we ran sepa-
rate clusterings for each type of transformed features. However,
this seems not particularly helpful. Discrimination errors for
English slightly drop, but increase for Xitsonga. As fMLLR is
applied to LDA+MLLT features, all useful information seems
already encapsulated in the fMLLR-transformed features. Sim-
ilarly, combining separate MFCC and PLP feature clustering
results led to lower errors on English, but not on Xitsonga.

Combining across LDA input dimensions, where the con-
text parameter c ranges from 1 to 8, was by far the most ef-
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Figure 3: Error rates after combination of clustering results.
The dotted line is the best performance before combination.

ficient scheme, boosting the discrimination quality across lan-
guages considerably. Combination across LDA output dimen-
sions d ∈ {16, 20, 23, 26} also led to a better performance
across the board, but to a lesser extent. These results let us
assume that higher dimensional coefficients still carry compli-
mentary information that can help in a combination scheme, al-
beit performing worse for clustering in isolation [15].

Clustering one feature set five times with subsequent com-
bination of the results had a slightly positive effect on English,
but was not helpful on Xitsonga. We assume the DPGMM clus-
ter generally leads to consistent output and multiple parallel it-
erations are therefore not particularly useful.

6. Conclusion
We successfully utilized a supervised acoustic model training
pipeline without supervision to improve DPGMM based fea-
ture vector clustering. Feature transformations estimated dur-
ing model training can be used to map speech feature vectors
into subspaces that are more suitable for clustering. Gaus-
sian posteriorgrams extracted from a DPGMM that was sam-
pled on transformed vectors carry better sound class discrimi-
nating characteristics than the ones sampled on untransformed
standard features. We showed that LDA greatly benefits sound
class discriminability within and across speakers. Consecutive
fMLLR transformation noticeably decreases the discrimination
error across speakers, proving the importance of speaker adap-
tation in solving the clustering task.

Combining multiple runs of LDA+MLLT+fMLLR-
transformed feature vector clustering that use varying input
dimensionalities yielded the the best results. We achieved error
rates of 10% within and 14.9% across speakers for English,
and 8.1% within and 11.7% across speakers for Xitsonga,
respectively. Given these results, our proposed two-stage
clustering framework clearly outperforms our own baseline, as
well as the baseline set by Chen et al. [9].

Our two-staged clustering approach is particularly suit-
able for low-resource languages and the zero-resource scenario.
Moreover, this framework might as well be of help for more
general purposes beyond low-resource languages. In future
work we will explore the applicability of our model training
and clustering pipeline to solving other tasks beyond sound unit
detection.
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