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Abstract
Several functional models for head-related transfer function
(HRTF) have been proposed based on spherical harmonic (SH)
orthogonal functions, which yield an encouraging performance
level in terms of log-spectral distortion (LSD). However, since
the properties of subbands are quite different and highly subject-
dependent, the degree of SH expansion should be adapted to
the subband and the subject, which is quite challenging. In
this paper, a sparse spherical harmonic-based model termed
SSHM is proposed in order to achieve an intelligent frequency
truncation. Different from SH-based model (SHM) which
assigns the degree for each subband, SSHM constrains the
number of SH coefficients by using an l1 penalty, and
automatically preserves the significant coefficients in each
subband. As a result, SSHM requires less coefficients at the
same SD level than other truncation methods to reconstruct
HRTFs . Furthermore, when used for interpolation, SSHM
gives a better fitting precision since it naturally reduces the
influence of the fluctuation caused by the movement of the
subject and the processing error. The experiments show that
even using about 40% less coefficients, SSHM has a slightly
lower LSD than SHM. Therefore, SSHM can achieve a better
tradeoff between efficiency and accuracy.
Index Terms: head-related transfer functions, spherical har-
monic, sparse representation, spatial hearing

1. Introduction
Virtual auditory displays (VAD) have attracted more and more
attention since virtual reality has been making a great revolution
in society. VAD gives us quite vivid auditory perception,
and pretends that we are surrounded by three-dimension (3D)
sound. In order to make VAD, head-related transfer function
(HRTF), which contains all of information in localization and
gives a spatial perception, is necessary for naturalness and
localization accuracy. HRTF describes the propagation from
the sound source to ear drums in free space[1], which is highly
individual-dependent. In order to generate the spatial audio for
everybody, theoretically it should be measured throughout the
space for each subject. Therefore, a great challenge for VAD
is to efficiently store HRTF database from dense measurements
because of the dependent property of HRTFs. One promising
solution is to model HRTFs in lower dimensional spaces. Then,
the model can be used to compress[2], interpolate to make
discrete HRTFs continuous[3][4], fast convolve to generate 3D
audio[5], and guide to sample during measurement[6][7] and so
on.

Many methods have been proposed for HRTF modeling.

One approach is based on principal components analysis
(PCA) [8][9] or the spatial feature extraction method, such
as spatial PCA [10]. The spatial variation is modeled by
the combination of a small number of principal components.
However, besides the principal components coefficients, the
basis matrix of these methods should be saved since it is
changed with the subject, resulting in less efficiency. Moreover,
it is not flexible to interpolate HRTF for movement or
head rotation in VAD. Another approach is surface spherical
harmonics-based modeling (SHM) [11]. Spherical harmonics
(SH) are a complete set of continuous orthonormal basis
functions on the sphere. By using SH, the model extracts
the directional cues from HRTFs, and achieves an encouraging
level in terms of spectral distortion (SD). The main advantage
of SHM is that the HRTFs can be modeled with a linear
combination of relatively small set of SH expansion coefficients
at the full space. Furthermore, its basis is universal for all
subjects, and thus only the SH coefficients are required to store.

In practice, SHs are truncated using a degree, and then
the SH coefficients are estimated by solving linear equations
of SHs and HRTFs. The degree plays an important role
in modeling. [11] showed that the magnitude and phase of
HRTFs can be separately modeled by using the degree of 7.
[12] studied the impact of reconstructed HRTFs with reduced-
degree SH expansions on the perception of virtual sounds, and
found that the accurate localization performance is retained
with the degree of 4. However, two problems exists in these
traditional methods. First, it is not reasonable to assign the
same degree for all subbands, because the importance for each
subband to human perception is different. Second, SHM with
a lower degree will suffer from underfitting and result in a
large interpolation SD with a high probability. As a solution,
[13] proposed two truncation methods respectively for spherical
head and human subjects. By developing it, [14] assigned an
upper SH degree, which is higher at the low frequencies than
[13], and bounded by 30 at the high frequencies. However,
these methods have no reason to select a degree varying with
subbands, and cannot make a subject-adaptive truncation.

Motivated by this, we present a sparse spherical harmonic-
based model termed SSHM. SSHM avoids to directly set a
degree, since it is a great challenge to design a systematical
truncation method where the degree adapts with the subband
and the subject. Instead, by constraining the sparsity of
the model, SSHM automatically preserves the significant
coefficients in each subband for different subjects, and discards
the relatively insignificant ones. Its advantage lies in adaptively
controlling the frequency truncation without fixing a degree.

The remainder of this paper is organized as follows. Section
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2 presents an overview of spherical harmonic-based model,
and the related methods for frequency truncation. Section 3
describes the proposed sparse spherical harmonic-based model.
The performance evaluation results are shown in Section 4.
Finally, Section 5 gives the conclusions.

2. Overview of SHM
First, the spherical harmonic-based model (SHM) is introduced.
Spherical harmonic is a function of elevation θ and azimuth
φ [15] [16], which can be expressed as

Y m
n (θ, φ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)ejmφ, (1)

where n = 0, 1, 2, ..., and |m| ≤ n. P
|m|
n (·) is associated

Legendre function of degree n and order m.
At the direction (θ, φ), SHM models the HRTFs as

H(θ, φ, f) =

∞∑
n=0

n∑
m=−n

Cm
n (f)Y m

n (θ, φ), (2)

where f is the frequency bin. Cm
n (k) are the complex

coefficients. In practice, this representation of (2) is truncated
by using a degree of N(f) for the frequency bin f . Thus,
Cm

n (k) can be approximated by using a limited number of
samples over the space S as

Cm
n (f) =

S∑
s=1

H(θs, φs, f)Y
m∗
n (θs, φs) sin θs, (3)

where (·)∗ denotes the conjugate operator.
There are two popular approaches to determine N(f). One

is to choose a constant degree for any f , i.e., N(f) = N , while
the other is to set the degree changing with frequency. [13]
sets the frequency-dependent degree as N(f) =

⌈
eπfs1

c

⌉
=⌈

eks1
2

⌉
, where e = exp(1). k = 2πf/c denotes wavenumber

and c is the speed of sound propagation in air. s1 is the typical
head radius, with 0.2m for f ≤ 3kHz and 0.09m otherwise.
For the frequency of 20kHz, the degree can reach to 49. For
another example, N(k) is chosen larger at low frequencies and
bounded by 30 at high frequencies[14], which is expressed as
N(k) = min

{
30,
⌈
eπfs2

c

⌉}
,with s2 = 0.5m. Though the

method makes the degree varying with the frequency, it did not
consider the difference between subjects, as well as the non-
monotonicity with the subbands.

3. Proposed SSHM
In this section, the proposed SSHM will be described in detail.
Motivated by the drawbacks in the existing SHM methods,
SSHM is proposed to achieve an adaptive degree truncation
in subbands. Prior to SSHM, the preprocessing of HRTF
database is discussed, and the parameters used for modeling
are determined. Then, the optimization problem for SSHM is
derived to obtain the sparse coefficients. As a result, SSHM
allows to faster generate continuous HRTFs over the whole
space, which is prerequisite for VAD.

3.1. Problem formulation

In the SHM method, frequency truncation plays an important
role in the tradeoff between the efficiency and the accuracy. An
optimal degree setting will definitely improve the performance
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Figure 1: The normalized spherical harmonic coefficients at
each frequency from CIPIC database. The degree is set to 10.
(a) Subject 003, (b) Subject 008.

of the model. However, it is not clear that which frequency is
dominant in human localization perception, and which subject
requires more or less coefficients to achieve a better balance.
Therefore, it is quite a challenge to make a degree to adapt with
the frequency as well as the subject.

To show this problem, the values of the normalized
coefficients with the degree of 10 for each frequency bin are
respectively drawn in Fig. 1 for subject 003 and 008 from CIPIC
database [17]. In this figure, we use the normalized coefficients
to reduce the fluctuation range, which is calculated as

Ĉm
n (fi) =

Cm
n (fi)− μ(fi)

σ(fi)
, (4)

where μ(fi) and σ2(fi) respectively denote the mean and
variance of the coefficients at the frequency fi. From Fig. 1,
it can be observed that: 1) the number of the significant
coefficients non-monotonically varies with subbands, and thus
the methods in Section 2 cannot be expected to achieve a best
performance; 2) the position of the significant coefficients is
different for each subband, which infers that the traditional
truncation to the degree will result in redundance of the
coefficients or underfitting; 3) the number of the significant
coefficients varies with subjects, and thus an optimal model
should follow this property. Based on these observations, it is
concluded that it is quite challenging to adaptively preserve the
coefficients for frequency bins from different subjects.

A heuristic method is used for SHM to set the coefficients
with small values to zero, and keep the remaining coefficients
unchanged. However, the method will definitely increase
the log-spectral distortion (LSD). In this paper, we present
SSHM, an adaptive degree modeling method for HRTFs.
Instead of assigning the degree for each frequency bin of the
subject, SSHM uses sparse representation to adaptively select
the significant coefficients according to HRTFs for different
subjects and frequency bins. Since SSHM automatically
generates sparse coefficients based on database, it inherently
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satisfies the three observations, and gives a more efficient
representation of HRTFs.

3.2. HRTF preprocessing

Human is not sensitive to the fine details of the phase spectrum
of HRTFs in localization [9] and discrimination perception [18].
Therefore, the minimum phase HRTFs and interaural time delay
(ITD) can well approximate HRTFs [19]. Besides, since the
phase part of the min-phase HRTFs can be obtained by Hilbert
transform of the its magnitude as

|Hmin(θ, φ, f)| = |H(θ, φ, f)|, (5)

ϕmin(θ, φ, f) = − 1

π

∫ +∞

−∞

ln |Hmin(θ, φ, f)|
f − ξ

dξ, (6)

the magnitude of the min-phase HRTFs and ITD are sufficient
to model HRTFs.

In SSHM, we use the logarithmic magnitude of HRTFs
because it is more approaching human’s auditory perception,
which is experimentally verified in [12] by comparing with
the complex HRTFs, and HRTF magnitudes. Prior to SSHM,
the average log-magnitude spectrum across all locations is
calculated and subtracted from each sample for each frequency
bin to create directional spectra, which is expressed as

Havg(fi) =
∑S

j=1
20 log10 |Hmin(dj , fi)|, (7)

Hp(ds, fi) = 20 log10 |Hmin(ds, fi)| −Havg(fi), (8)

where ds = (θs, φs) ∈ D denotes the s-th sampling point of
the direction set D. S is the total number of the directions.

Since the averages include spatial features shared by
all HRTFs, the resulting log-magnitudes represent primarily
frequency-dependent spatial effects. Along with ITD, they
are used to model HRTFs by the proposed sparse spherical
harmonic-based method.

3.3. Sparse representation for SHM

SSHM aims to adaptively select the coefficients by a sparse
coefficient matrix. By discarding the insignificant coefficients,
SSHM also reduces the influence of fluctuation caused by the
movement of the subject and the processing error.

SSHM models the log-magnitude at each frequency bin for
left and right ears and ITD over the space by using an l1 penalty
to achieve a sparse solution. Let HL

p (ds, fi) and HR
p (ds, fi)

respectively denote the log-magnitude spectrum for the left and
right ears after subtracting the average at the frequency fi and
the direction ds. The problem for SSHM is formulated as

min
Ci

n

⎛
⎝ S∑

s=1

(
Ri

s −
Nm∑
n=1

Ci
nYn(ds)

)2

+ λi

Nm∑
n=1

|Ci
n|
⎞
⎠ , (9)

s.t., Ri
s =

⎧⎨
⎩

T (ds), for i = 0
HL

p (ds, fi), for i ∈ [1, L]
HR

p (ds, fi−L), for i ∈ [L+ 1, 2L]
, (10)

where L is the unique number of the log-magnitudes of
HRTFs. Since the HRIRs are real, HRTFs have conjugate
symmetry. By considering the log-magnitude, L = Q/2 +
1 coefficients are unique for each ear with the order of
discrete fourier transform (DFT) Q. Nm = (N0 +
1)2 and N0 is the allowable maximum degree. The Nm

basis functions are Y(ds) = [Y1(ds), · · · , YNm(ds)]
T =

[Y 0
0 (ds), Y

−1
1 (ds), Y

0
1 (ds), Y

1
1 (ds), · · · , Y N0

N0
(ds)]

T . Ci
n are

the sparse coefficients. The shrinking parameter λi controls the
sparsity level of the model.

Eq.(9) is a convex optimization problem. We choose
least absolute shrinkage and selection operator (LASSO) to
solve it, which estimates a vector of regression coefficients by
minimizing the residual sum of squares subject to a constraint
on the l1-norm of the coefficient vector[20][21]. To prevent
overfitting, the K-fold cross-validation approach is used to train
λi [22]. Here, we use tenfold, and λi is chosen with the
minimum cross-validation error. As a result, the coefficients are
obtained with nonzero terms at the position set of Pi for ITD
and frequency bins of each ear.

3.4. HRTF reconstruction and continuous interpolation

Given any arbitrary direction, HRTFs can be generated by using
the SH extension coefficients. Because of the sparsity of SSHM,
the reconstruction or interpolation can be processed faster.

There are three steps to obtain the HRTFs for two ears given
a direction ds = (θs, φs). First, the spherical harmonic basis
functions are calculated by using (1), which can be prepared
outline in advance. Then, the log-magnitude of the min-phase
HRTFs (for i ∈ [1, 2L]) and ITD (for i = 0) can be estimated
by

R̂i
s =

∑
l∈Pi

Ci
lYl(ds), i ∈ [0, 2L], (11)

which will be used to obtain the min-phase HRTFs

Ĥmin(ds, fi) by using (5)-(8) and (10). Finally, the HRTFs for
the two ears are approximated as

ĤL(ds, fi) = Ĥmin(ds, fi)e
−j2πfi(T0+T̂ (ds)), (12)

ĤR(ds, fi) = Ĥmin(ds, fi+L)e
−j2πfiT0 , (13)

where i = 1, ..., L, and T0 is the propagation delay from the
sound source to the right ear, which can be estimated by r/c
with the path distance of r.

4. Performance evaluation
In this section, the performance of the proposed SSHM is
evaluated. CIPIC database is used for this purpose [17]. The
database is obtained from 43 subjects. Each ear of each subject
is measured with 25 azimuths and 50 elevations at a distance
of 1m. Each head-related impulse response (HRIR) has been
windowed in about 4.5ms (200 points). Prior to SSHM, all
the HRIRs first are converted to the HRTFs by using 256-DFT,
and the min-phase HRTFs after subtracting the average are then
calculated by (5). There are the total of 259 parameters required
to be modeled for each direction.

For objective evaluation, the log-spectral distortion (LSD)
between the estimated and the measured HRTFs is applied. Let
D denote the set with S directions, and LSD is defined as

LSD =

√√√√ 1

SNf

∑
d∈D

k2∑
k=k1

(
20 log10

|H(d, fk)|
|Ĥ(d, fk)|

)2

, (14)

where k1 and k2 respectively denote the beginning and the end
of the considered frequency bins, and thus Nf = k2 − k1 + 1.

In order to evaluate the relative efficiency of SSHM to
SHM, a relative reduction of coefficients is defined as

Pr = 1−
∑2L

i=0 Mi

N0(2L+ 1)
, (15)
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Figure 2: The performance of SSHM be-
tween efficiency and accuracy compared
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Figure 4: The interpolation performance
of SSHM compared with SHM with the
degree of 20 in the median plane.

where Mi denotes the number in the position set Pi. Fur-
thermore, an absolute reduction of coefficients Pa is used to
evaluate the efficiency of different methods, which is defined as
the ratio of the reduced number of coefficients to the number
stored in CIPIC database.

4.1. Reconstruction performance

First, the reconstruction performance of SSHM is evaluated
by comparing with other three methods: constant degree, and
frequency-dependent truncation methods shown in [13] and
[14] in terms of LSD, Pa and Pr . Two frequency bands are
considered: audible band between 50Hz and 8kHz, and full
band between 20Hz and 22.05kHz. The results are shown in
Table 1 where SSHM-X denotes that the allowable maximum
degree is X . First, for the audible band, it can be seen that on
the same level of efficiency, SSHM achieves 0.09dB, 0.077dB
gains over constant degree and [14], respectively. The LSD
performance of [13] is dramatically worse than others, because
of its too few coefficients at the low frequencies. For the full
band, SSHM requires about 7% less number of the coefficients
than the constant method at the same LSD of about 0.83dB.
Besides, SSHM is significantly better than [13].

Table 1: Reconstructed LSD comparison of SSHM with constant
degree, [13] and [14] for subject 008 from CIPIC database.

Band (Hz) Methods LSD (dB) Pa Pr

audible band N = 28 0.401 0.848 −
(50-8000) [13] 1.336 0.963 −

[14] 0.388 0.849 −
SSHM-40 0.311 0.848 0.499

full band N = 28 0.831 0.568 −
(20-22050) [13] 0.939 0.448 −

[14] 0.719 0.537 −
SSHM-40 0.866 0.636 0.579
SSHM-50 0.830 0.637 0.728

Moreover, the tradeoff performance of SSHM between
efficiency and accuracy is evaluated with a heuristic sparse
method, which reduces the number of the non-zero coefficients
on SHM by setting the small values to zero, such that the
number of the remaining non-zero coefficients is equal to that
of SSHM. It is used to evaluate the performance of SSHM
under the same sparse level with SHM, and we refer it as
SHM2. The results are shown in Fig. 2, where N0 from the
right to left is 4 to 34 with a step of 1. In this figure, it is
clear that SSHM performs better than SHM and SHM2 in all
conditions. Besides, SHM2 shows a worst LSD performance

and is even diverged for a larger degree, because it discards
much information. The experiments infer that SSHM can obtain
a better tradeoff between the efficiency and the accuracy.

4.2. Interpolation performance

Then, the performance of SSHM on interpolation is evaluated
in the horizontal plane and the median plane by comparing with
SHM. The results are shown in Fig. 3 and Fig. 4, respectively.

Fig. 3 shows that SSHM achieves a significant improve-
ment near the front of the horizontal plane. The average
interpolation LSD of SHM over the 25 directions of the
horizontal plane is 3.44dB. By using 38.17% less coefficients
compared with SHM, the average LSD of SSHM is only
3.18dB. Furthermore, from Fig. 4, it can be seen that by
reducing the number of coefficients by 39.32%, the average
LSD of SSHM is 1.53dB over the median plane, compared
with SHM of 1.75dB. Thus, though using less coefficients,
SSHM can achieve better interpolation performance than SHM.
The reason behind this is its great robustness to fluctuation.
Furthermore, as we can see, the interpolation performance in
the horizontal plane is much better than that in the median
plane. One posssible reason is that the quite large fluctuation,
especially above the ears and below the knees, takes more
errors during the HRTF measurements, and thus the interpolated
HRTFs are not completely matched to the measured ones.

5. Conclusions
In this paper, a sparse spherical harmonic-based model termed
SSHM is proposed. SSHM uses a sparse linear combination
to adaptively preserve the significant coefficients in each
subband independent of the subject, resulting in more efficient
representation. The experiments show that SSHM requires less
coefficients at the same level of LSD compared with other
frequency truncation methods. Furthermore, the interpolation
performance shows that even using about 40% less coefficients,
SSHM has a slightly lower LSD than SHM. SSHM can achieve
a better tradeoff between the efficiency and the accuracy.
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