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Abstract 
In the field of voice therapy, perceptual evaluation is widely 
used by expert listeners as a way to evaluate pathological and 
normal voice quality. This approach is understandably 
subjective as it is subject to listeners’ bias which high inter- 
and intra-listeners variability can be found. As such, research 
on automatic assessment of pathological voices using a 
combination of subjective and objective analyses emerged. 
The present study aimed to develop a complementary 
automatic assessment system for voice quality based on the 
well-known GRBAS scale by using a battery of 
multidimensional acoustical measures through Deep Neural 
Networks. A total of 44 dimensionality parameters including 
Mel-frequency Cepstral Coefficients, Smoothed Cepstral Peak 
Prominence and Long-Term Average Spectrum was adopted. 
In addition, the state-of-the-art automatic assessment system 
based on Modulation Spectrum (MS) features and GMM 
classifiers was used as comparison system. The classification 
results using the proposed method revealed a moderate 
correlation with subjective GRBAS scores of dysphonic 
severity, and yielded a better performance than MS-GMM 
system, with the best accuracy around 81.53%. The findings 
indicate that such assessment system can be used as an 
appropriate evaluation tool in determining the presence and 
severity of voice disorders. 
Index Terms: voice quality, automatic assessment, DBN, 
MLP, GRBAS 

1. Introduction 
Speech production is a complex physiological process in 
which the larynx serves the very important function of 
phonation [1]. With the increase in voice use during social 
interaction, voice disorders, known as dysphonia, as a result of 
extensive or improper voice use, are becoming more common. 
This seriously affects the physical and psychological well-
being of the voice users [2]. As a first step in managing 
dysphonia, it is crucial to correctly detect its presence and 
severity. Currently, two dominant approaches in diagnosing 
dysphonia and evaluating voice quality are used: perceptual 
analysis and acoustic analysis. 

The use of perceptual analysis in assessing a pathological 
voice has been an important element of clinical diagnosis of 

dysphonia, and it has a definite role in the design of an 
appropriate therapeutic regimen [3, 4]. The GRBAS (Grade, 
Breathiness, Asthenia, Strain) scale has been serving as a 
standard for practicing voice clinicians which is recommended 
by the Japan Society of Logopedics and Phoniatrics [5, 6]. It 
has been widely recognized as a gold standard for effective 
and reliable perceptual voice quality evaluation. When using 
the scale, clinicians provide a score of 0, 1, 2, or 3 for GRBAS 
traits of the voice perceived, with a “0” representing perceived 
normal, “1” slightly, “2” moderately, and “3” severely 
disordered quality. Apparently, such perceptual analysis is 
considerably subjective and can be unreliable. The accuracy of 
such rating depends strongly on the experience level and the 
amount of bias of the assessor. Although the assessor is 
usually well-trained professional, his/her psychophysical 
condition and some other subjective factors might affect the 
results [3]. Perceptual analysis appears to be more accurate 
and reliable in distinguishing between normal and severely 
dysphonic voices, but it seems not as sensitive in ranking 
severity of disordered voices. 

Acoustic analysis using signal processing techniques, on 
the other hand, offers an objective and effective method in 
early detection and diagnosis of pathological voices, on top of 
its relatively low cost and non-invasive nature [6]. Attempts 
have been made to evaluate voice quality by using acoustical 
measures such as traditional perturbation measures, nonlinear 
dynamical analysis and cepstral analysis [7, 8]. Using these 
acoustic parameters, researchers have become increasingly 
interested in developing automatic detection and rating of 
pathological voices. They were done by means of acoustic 
analysis, non-parametric feature extraction, pattern recognition 
algorithm and various statistical methods [9-13]. Currently, a 
new array of parameters based on Modulation Spectrum (MS) 
which were proposed to characterize perturbations of the 
human voice, with its objective basis to help clinicians detect 
pathological voice or to perform an automatic pathology 
classification [14]. An efficiency of 81.6% was obtained for 
Grade (G) of selected samples using MS and Gaussian 
Mixture Models (GMM) classifiers [14]. 

There are several classification methods used to 
investigate the effect of voice signal in perceptual ratings and 
automatic evaluation GRBAS Grade trait. Previous studies 
have revealed that automatic detection of voice impairments 
can be carried out by means of Multilayer Perceptron (MLP), 
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Support Vector Machine (SVM), Classification and 
Regression Tree (CART), Learning Vector Quantization 
(LVQ), using the well-known Mel Frequency Cepstral 
Coefficients (MFCCs) acoustical measures based on the 
GRBAS ratings [11-13].  

Although the feasibility of an automated assessment 
system has been confirmed, improving the classification result 
is still needed in order for a better and more meaningful 
clinical application to be made. In the parameterization stage, 
Smoothed Cepstral Peak Prominence (CPPS) and Long-Term 
Average Spectrum (LTAS) were adopted to complement the 
classical MFCCs measures for the advantage of running 
speech [15-16]. Furthermore, most studies of voice quality 
focused on sustained vowels instead of running speech. To the 
best of our knowledge, few of them offered an assessment of 
voice quality for running speech, limiting their applicability of 
voice evaluation in the practical realm. The major goal of the 
present study was to apply the complementary automatic 
assessment system for voice quality based on running speech. 
In this case, both CPPS and LTAS parameters can be used as 
appropriate assessment parameters. 

The purpose of this work was to evaluate the pathological 
voice quality using multidimensional acoustical parameters 
extracted from running speech samples through DBN-DNN 
classifier according to the GRBAS scale. Using DNNs for 
adaptive acoustic model for handling large-scale running 
speech recognition has attracted extensive attention [17-
19].On the one hand, in a continuous space, DBN-DNN can 
simulate the complicated distribution without making an 
artificial hypothesis of distribution and help to extract the 
phonetic characteristics of distributed simulation and has a 
powerful discriminative for features[17]. On the other hand, 
DBNs has been applied in the visual attributes learning, so as 
to effectively improve the multi-level classification 
performance and generalization accuracy of classifier [17, 19]. 
Considering these advantages of DBN-DNN, it is believed that 
it should be suitable for dealing with attribute description and 
objective evaluation of pathological voice quality.  

In the present study, a four-class classification for 
pathological voice quality based on the well-known “Grade” 
parameter of GRBAS scale was proposed. A multidimensional 
features battery including MFCCs, CPPS and LTAS was 
extracted from running speech samples. Deep Neural 
Networks (DNNs) was utilized as the classification model 
which adopted the Deep Belief Nets (DBN) for pre-training 
and Multi-layer Perceptron (MLP) for fine-tuning. The 
assessment system based on sustained vowels using MS 
features and GMM classifier was also employed and used as 
baseline set. 

2. Methods 

2.1. Database 
The database used in the present study contained sustained 
vowel and running speech samples selected from the North 
Chinese Corpus. For each voice, two recordings were 
available: production of a sustained vowel /a/ and a short 
running speech. There are 3162 voice samples for running 
speech and 732 voice samples for sustained vowel produced 
by 260 subjects with voice disorders and 106 (48 females and 
58 males) normal controls. The disordered voice samples were 
obtained from 117 females and 143 males, of an age range of 
18-60 years recorded by the Department of 

Otorhinolaryngology of the People’s Liberation Army General 
Hospital. And the voice samples represented a wide variety of 
different vocal pathologies, including various types of vocal 
fold lesions, vocal cord paralysis, arytenoid granuloma, vocal 
cord pre-cancerous lesions and vocal cord carcinoma. Voice 
samples were recorded in a professional recording studio with 
an acoustic sensor (B&K 4189), which was sheathed with a 
wind-shelter to block the airflow to avoid recording of 
unnecessary noise. The voice signals were sampled at 22.05 
kHz with 16 bits/sample resolution. All speech recordings 
arranged in three different orders which were perceptually 
evaluated by five practicing speech pathologists, who rated 
each recording using the GRBAS scale. 

2.2. Features extraction 
Two parameterization batteries are considered in this study, 
including multidimensional features extracting from running 
speech and MS parameters from sustained vowels. For the 
former, the MFCCs, CPPS and LTAS were included.  

2.2.1. Mel-Frequency Cepstral Coefficients 

For nonlinear characteristic parameters, the MFCCs describe 
the energy distribution of a signal in the frequency domain and 
refer to perceived frequency. They have been widely used as 
features in automatic speech recognition and in assessing 
pathological voice quality [7, 8, 11-13]. Taking into account 
the characteristics of human auditory perception, MFCCs were 
estimated using a nonparametric FFT-based approach. A 39-
dimensional MFCCs feature vector consists of log energy, 12 
mel frequency cepstral coefficients, the first-order derivatives 
and the second-order derivatives of these 13 static features.  
They were extracted by using Hcopy tools in Hidden Markov 
Model Toolkit (HTK) [20]. 

2.2.2. Smoothed Cepstral Peak Prominence 

The CPPS measure represents the distance between the first 
harmonic peak and the point with equal frequency on the 
regression line through the smoothed cepstrum. This 
parameter indexes the periodic attribute of voice signal. The 
more periodic is a voice signal, the more prominent will the 
cepstral peak be [15]. Consequently, CPPS has been used to 
reliably evaluate the dysphonia severity in both sustained 
vowels and running speech samples. In this study, CPPS 
parameter was estimated using the smoothing algorithm and 
linear regression analysis.   

2.2.3.  Long-Term Average Spectrum 

LTAS analysis provides spectral information averaged over a 
long period of time, thereby highlighting aspects of speech or 
singing voice production over a longer temporal span. 
One way to quantify the LTAS output is by means of spectral 
moment analysis, where the shape of the speech spectrum is 
described according to the spectral mean, standard deviation, 
skewness, and kurtosis [16] of the curve. In the present study, 
LTAS parameters were estimated using a method based on a 
single transformation followed by spectrum size reduction. 
Fast Fourier transform (FFT) and a uniformly spaced filter 
bank were used to calculate the LTAS parameters.  

2.2.4. Measures of modulation spectra 

Modulation spectra provide a visual representation of sound 
energy spread in the space of acoustic by modulation. They 
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provide information about perturbations related to amplitude 
and frequency modulation of the voice signal. With a group of 
well-defined parameters including Centroids, Dynamic Range 
per Band, Low Modulation Ratio, Contrast and Dispersion 
parameters, MS has been used for detecting the presence of 
dysphonia and the degree of disorder [14]. In this study, the 
MS parameters were calculated using the Modulation Toolbox 
library version 2.1 [21], and MS parameters were obtained by 
calculating mean value from all frames of the input signal, 
except the Centroids. 

For running speech, the multidimensional features were 
extracted from each sample of one to three seconds long with 
25-ms interval overlapping 10-ms and multiplied by a 
hamming window. For sustained vowels, only a 1-s segment 
extracted from the vowel was used for analysis, which was 
framed and windowed using hamming windows overlapped 
50%. The window length was 40ms in 20ms step.  

2.3. Classification algorithm 
The DBN-DNN consisted of DBN and MLP, with DBN used 
to pre-train the offset value and weight in an unsupervised 
manner, and MLP used by Bach-Propagation (BP) algorithm 
for training in classification. A classical supervised learning 
based on the Gaussian Mixture Model (GMM) paradigm was 
employed for comparison. 

2.3.1.  DBN model 

DBN is a generative model of probability which is constructed 
from multiple layers of hidden units. It can be seen as simple 
learning modules that make up each layer of the Restricted 
Boltzmann Machine (RBM) [22]. In the present study, the 
Contrastive Divergence (CD) was used as the optimization 
method for RBMs [23]. As the input data in the experiment 
were real and were obtained from real human productions, the 
energy function of the RBMs was suitable for binary data, the 
study used the Gaussian–Bernoulli restricted Boltzmann 
machine (GRBM) [23] instead of the first RBM (Constituted 
by the input layer and hidden layer1). The DBN-DNN systems 
were pre-trained using the multidimensional acoustic features. 
These were used as the input feature to train DBN with 512 
neurons in each hidden layer using the Kaldi toolkit [24]. 
Figure 1 shows the DBN schematic representation that 
adopted by the experiment. 

Hidden layer4

Hidden layer3

Hidden layer5

Hidden layer1

Input layer

Hidden layer2

RBM

RBM

GRBM

RBM

RBM

 
Figures 1 : DBN structure 

2.3.2. DBN training 

The multidimensional features were fed into the DBN-DNN 
classification as the input features. In order to release the noise, 
all data were divided into several mini-batches. The updated 
value mini-batch was averaged after they were being updated 

though the stochastic gradient descent algorithm and one-step 
Contrastive Divergence approximation. To update the 
parameters according one mini-batch, then repeated until all of 
mini-batches were updated, and after this the machine has 
completed an epoch. The training methods of GRBM and 
RBM were similar. Briefly, the DBNs were first pre-trained 
with the training dataset in an unsupervised manner though 
training the layer-layer RBMs by using the Kaldi toolkit [24]. 
It was then followed by the supervised fine-tuning using the 
same training dataset and the validation dataset to do early-
stopping. The selected DBN model is described in Table 1. 

Table 1. DBN model configuration 

Configuration item value 
number of hidden layers 5 
neurons per layer 512 
learning-rate for RBMs 0.2 
learning-rate for GRBM 0.01 
Mini-batch size 256 

 

2.3.3.  MLP model and training 

MLP is a popular example of feed-forward neural network 
which can cope with the non-linearly separable problems, as 
each neuron of the MLP uses a nonlinear activation function 
[25]. The input features using the same training dataset as in 
DBN training. The MLP structured included a input layer, five 
hidden layers (same as DBN) and a output layer. Additionally, 
each layer of MLP was fully connected to the next level. In the 
study, the pre-trained result of DBN included weights and 
offset values were used as the initial data of MLP network; 
four neurons mapping to the ‘G’ grade of GRBAS scale 
though the softmax function [22].   

The Back-propagation (BP) algorithm was used in the 
training of MLP network, as it can calculate the gradient of the 
error of the network regarding the network’s modifiable 
weights. The steps of MLP training and procedures about the 
BP algorithm has been described in detail in the literature [23]. 
In the MLP model, the learning rate was set to 0.008, the 
outputs were obtained though the softmax layer. The number 
of hidden layers, mini-batch size and the neurons of hidden 
layers were the same as DBN setting. 

2.3.4. GMM training 

Having a data vector  of dimension  resulting from the features 
extraction, a GMM is a model of the probability density 
function defined as a finite of multivariate Gaussian 
components of the form  

            ρ(x|Θ�) = ∑ λ�
ℊ

�	
 �(x; μ�, ∑�)                                   (1) 
where λ� are scalar mixture weights, �(∙) are Gaussian density 
with mean μ�  of dimension d and convariances ∑�  of 
dimension 
 × 
 . For each class (i.e., values of the G 
perceptual levels: 0,1,2, or 3 ), GMM training is performed by 
estimating the abovementioned parameters with expectation-
maximization algorithm (EM) [26]. And a threshold is fixed at 
the Equal Error Rate (EER) point prior to the final decision. 
With the aim of an accurate comparison in the state of art, the 
GMM classifier was used along with MS parameters. 
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3. Results 
To evaluate the performance of classification, a 5-fold cross 
validation scheme [27] was used, in which 85% of dataset 
were used to train the classifier, 5% for validation and the 
remaining 10% for testing. The global result for a certain 
parameterization experiment is the average of the results in all 
folds. Assessment of the classifier performance was performed 
in terms of efficiency, the Confidence Interval (CI) [28] and 
Cohen’s Kappa Index (K) [29]. This last indicator provides 
information about the agreement between results of the 
classifier and clinician’s perceptual labeling. The number of 
Gaussian components of the GMM was varied from 4 to 48 in 
order to identify the best performance of classifier. The best 
results of MS-GMM system for our database were obtained 
using MS parameters, 20 ms frames, and 8 GMM. 

Table 2 shows that the efficiency and Cohen’s Kappa 
Index of G class obtained with DBN-DNN using MFCC only 
and the multidimensional feature battery, while that of MS-
GMM system and MFCC-GMM system are shown as the 
baseline system for comparison. The best results (81.53%) 
were obtained using DBN-DNN classifier with 
multidimensional parameters and value of Kappa index is up 
to 0.76, indicating that automatic assessment appeared to 
match well with perceptual assessment. For each G class, 
similar to total grade classification, better performance was 
observed, except for G0 class (see Table 3). Growth of the 
efficiencies was around 1%, the performance of G3 class was 
markedly improved. In each classifier, the G3 class showed 
the best performance, followed by G0 class. The G1 and the 
G2 class exhibited worse classification, which indicate that it 
is difficult to discriminate between G1 and G2 dysphonia 
severity. 

Table 2. Results expressed as efficiency  confidence interval 
and Cohen’s Kappa Index for G class 

Features Classifiers Efficiency (%) Kappa 
Multi-dimensions DBN-DNN 81.53 ± 4.21 0.761 
MFCC+Δ + ΔΔ DBN-DNN 80.61 ± 4.3 0.734 
MFCC+Δ + ΔΔ GMM 78.91 ± 4.9 0.692 

MS GMM 73.02 ± 10.61 0.687 
 

Table 3. Results expressed as efficiency  confidence interval 
for each G subclass 

G 
class 

Efficiency (%) 
DBN-DNN GMM 

MFCC+Δ + ΔΔ Multi-dimensions MS 
G0 83.56 ± 8.62 81.55 ± 8.34 88.14 ± 20.0 
G1 74.45 ± 9.43 75.87 ±  9.37 69.67 ± 19.3 
G2 79.51 ± 8.84 80.51 ± 8.57 66.18 ± 17.1 
G3 84.31 ± 7.71 89.08 ± 6.83 93.63 ± 17.7 

4. Discussion 
The present study developed a new automatic system based on 
the DBN-DNN model to emulate perceptual assessment of 
voices according to the G feature of the GRBAS scale, using 
multidimensional features battery based on MFCCs, CPPS and 

LTAS. The outcomes were compared to the state-of-the-art 
MS-GMM system. Better performance was obtained with the 
proposed system, providing 81.53% of efficiency and 0.76 
Cohen’s Kappa Index. And the agreement with perceptual 
assessment can be considered as matching well. To the best of 
our knowledge, this is a first application by using DNNs 
classifier to utilize such assessment system. Although an 
accurate comparison with the previous studies is difficult due 
to the use of different corpus and methodologies, results of the 
present study promoted a more convincing comparison based 
on the same database.  

Unlike the present study, previous investigations offered 
no assessment of voice quality associated with running speech 
samples, mainly because vowels are easily elicited and less 
affected by articulation and dialectal influences. However, 
running speech is more representative of a person’s daily voice 
use, and it is an important part of perceptual voice evaluation. 
The fact that the proposed system yielded a higher quality 
compared to MS-GMM system for pathological running 
speech implies that running speech gives more valuable 
information to assess the degree of dysphonia than sustained 
vowels.   

It is noticeable that the results of total grade classification 
based on DBN-DNN classifier are much better than GMM 
classifier. Moreover, DBN-DNN classifier tended to work 
better in terms of class G1 and G2. The reasoning behind this 
phenomenon is that the risk of misclassification between class 
G1 and G2 was reduced.  Summary, the integrated accuracy 
(G in table 2, 3) from the classification and the accuracy of 
each class by the classifier showed that the present four-class 
assessment system using the DBN-DNN as a classifier can 
contribute to achieve a superior classification of pathological 
voice quality. 

Regarding the use of multidimensional features, the 
improvements are noticeable. The present results showed high 
classification accuracy, suggesting that it was a meaningful 
and successful attempt. In future work, for multidimensional 
features, some other features such as complexity and noise 
measurements applied to running speech might be of interest. 
Moreover, a fusion model of automatic assessment based on 
running speech and sustained vowels should be considered to 
improve the accuracy of objective evaluation of voice quality. 

5. Conclusions 
The present results suggest that it is an appropriate assessment 
classifier for evaluating the presence and severity of 
disordered voices by using the DBN-DNN combing 
multidimensional acoustic parameters as a tool based on the 
GRBAS rating scale. Further studies should be involved more 
objective analyses and nonlinear features in running speech. 
Besides, more voice samples should be collected to train the 
DBN-DNN model. In conclusion, the system proposed can 
objectively, effectively, and reliably evaluate quality of 
pathological voices. 
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