
Determining Native Language and Deception
Using Phonetic Features and Classifier Combination
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Abstract

For several years, the Interspeech ComParE Challenge has fo-
cused on paralinguistic tasks of various kinds. In this pa-
per we focus on the Native Language and the Deception sub-
challenges of ComParE 2016, where the goal is to identify
the native language of the speaker, and to recognize deceptive
speech. As both tasks can be treated as classification ones, we
experiment with several state-of-the-art machine learning meth-
ods (Support-Vector Machines, AdaBoost.MH and Deep Neu-
ral Networks), and also test a simple-yet-robust combination
method. Furthermore, we will assume that the native language
of the speaker affects the pronunciation of specific phonemes in
the language he is currently using. To exploit this, we extract
phonetic features for the Native Language task. Moreover, for
the Deception Sub-Challenge we compensate for the highly un-
balanced class distribution by instance re-sampling. With these
techniques we are able to significantly outperform the baseline
SVM on the unpublished test set.
Index Terms: accent recognition, SVM, deep neural networks,
AdaBoost.MH, classifier combination, instance sampling

1. Introduction
Computational paralinguistics, a subfield of speech technology,
is concerned with the non-linguistic information content of the
speech signal. A large number of different paralinguistic tasks
exist like detecting laughter [1, 2, 3], emotions [4, 5], estimating
the intensity of conflicts [6, 7, 8], and so on. The importance of
this area is reflected in the fact that for several years now the In-
terspeech Computational Paralinguistic Challenge (ComParE)
has been held regularly (e.g. [9, 10, 11]).

Here, we describe our approach for the Deception and the
Native Language sub-challenges of ComParE 2016 [12]. In the
first sub-challenge, deceptive speech has to be identified, while
in the Native Language Sub-Challenge, the task is to determine
the native language (referred to as L1) of the speaker while he
is speaking in another language (L2), this time in English. Fol-
lowing the Challenge guidelines (see [12]), we will omit the
description of the tasks, datasets and the method of evaluation,
and concentrate on the techniques we applied. We should also
note that, unlike in a standard conference study, in this case it
makes sense to experiment with several techniques at the same
time, which we will indeed do.

Determining the L1 language of the speaker (or accent
recognition) is a well-studied task within speech technology
(see e.g. [13, 14, 15]). Similarly to the standard techniques
found in the literature, our approach for the Native Language

Sub-Challenge is based on the fact that L1 affects the pronunci-
ation of L2 phonemes. However, to avoid the complexity intro-
duced by i-Vectors, which are the standard solution for this task,
we first performed frame-level phoneme identification. Then
we examined the frame-level DNN outputs, and extracted dif-
ferent features based on them, as we assumed that they encode
valuable information on the pronunciation of the L2 phonemes.

After feature extraction, the next important step is that of
classification. However, there are several machine learning al-
gorithms available, which can be considered as state-of-the-art.
In our study we examined three such methods, namely Support-
Vector Machines (SVM, [16]), DNN and AdaBoost.MH [17].
We also applied a robust classifier output combination method,
and, for the Deception Sub-Challenge, instance re-sampling.

The structure of this paper is as follows. First, in Section 2
we describe the way we extracted the phonetic features of the
utterances of the Native Language Sub-Challenge, and we also
present the results got with these features on the development
set. Next, in Section 3 we describe the classifier methods used,
how we set their hyper-parameters, the way we combined their
outputs, and we then describe the sampling techniques applied.
Lastly, in Section 4.2 we present and analyze our test results.

2. Phonetic Feature Extraction from DNN
Output for Native Language Determination
Our approach for identifying the native language of the speaker
(i.e. Native Language Sub-Challenge) was based on the obser-
vation that native language significantly affects the pronunci-
ation of certain L2 phonemes. In speech recognition terms it
means that the L1 languages of the speakers may lead to fur-
ther errors in the ASR output. However, as the reason for these
mispronunciations is partly that the speaker has a different na-
tive language, they supposedly appear as some tendencies in the
phoneme confusion matrix of the phoneme-level ASR output.

Of course, to construct a phoneme confusion matrix we
would need a ground truth transcription of the utterances, which
was not available (and in an application situation it is expected
to be unknown anyway). However, assuming that, in the long
term, phonemes in a given (L2) language follow some specific
distribution, we can expect that the phonemes in the ASR out-
put will differ from this ideal distribution (that can be obtained
from native speakers), and this tendency is L1-dependent.

To this end, first we performed speech recognition on the
utterances, using a DNN/HMM hybrid model. This resulted
in a phoneme-level posterior probability vector for each frame,
and a time-aligned phoneme sequence for each utterance, which
served as a basis for the next feature extraction step.
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Figure 1: Feature extraction from the frame-level output of the CI DNN. The vertical bars represent the CI DNN output vectors for
frame ti, belonging to the states s1 . . . s3 of each possible phoneme phj . The circled region displays the region for averaging: in the
“DNN stats #1” strategy (left hand side) we take the mean of the frames of the whole utterance, while in the “DNN stats #2” strategy
(right hand side) we average out the frames belonging to the same phoneme, according to the time-aligned ASR output.

2.1. Obtaining a Time-Aligned Phoneme Sequence by ASR

As the acoustic model we utilized a Deep Rectifier Neural
Network [18] with 5 hidden layers and 1000 neurons in each
layer. The DNN was trained on the fairly large, freely available
“TEDLIUM” English speech corpora [19], following the Kaldi
recipe [20]. We applied our custom DNN implementation for
GPU, which achieved outstanding results on several datasets
(e.g. [21, 22]). As acoustic features 12 mel-frequency spec-
tral coefficients (“MFCC”, [23]), along with energy, and their
first and second order derivatives were used. We used context-
independent (CI) phoneme models, based on the results of our
preliminary tests. We had 47 phonemes, which, since we used
a tri-state setup, led to 141 states overall.

2.2. Feature Extraction

Next, we extracted numerous feature sets from the time-aligned
phonetic ASR output. Note that we implicitly made use of
the fact that the utterances are of roughly the same length,
hence fairly reliable statistics can be calculated from them. Fur-
thermore, besides our feature sets extracted, we also utilized
the 6373-item feature set provided by the Challenge organizers
(see [12]), which will be referred to as the standard feature set.

The simplest feature set that we constructed consisted of
the total number of occurrences and the total duration of occur-
rences for each phoneme (feature set of “phoneme stats”). With
the 47-item phoneme set, this resulted in a quite compact vector
with only 94 attributes for each utterance.

We based the following two feature sets on the frame-level
output of our acoustic CI tri-state DNN. In the first feature set
(referred to as “DNN stats #1”), we calculated the mean and
standard deviation of each DNN output utterance-wise, result-
ing in 282 features overall. This is also a quite compact feature
set compared to the 6373-long standard feature vector. Lastly,
we calculated the mean and the standard deviation of the DNN
outputs, but this time we also used the time-alignment we got
previously: we calculated these scores for the frames belonging
to the same phoneme in the phoneme-level ASR output (“DNN
stats #2”). This led to 13254 attributes overall. The scheme of
these feature extraction steps can be seen in Figure 1 above.

Feature set Size Acc. UAR
Standard 6 373 46.9% 47.1%
Phoneme stats 94 45.2% 45.5%
DNN output stats #1 282 54.7% 54.8%
DNN output stats #2 13 254 56.7% 56.9%
Standard + phoneme stats 6 467 50.0% 50.2%
Standard + DNN stats #1 6 655 53.4% 53.5%
Standard + DNN stats #2 19 627 61.1% 61.3%
All features 20 003 62.9% 63.1%
ComParE baseline [12] 44.9% 45.1%

Table 1: Accuracy and UAR scores got by using the different
feature sets with SVM applied on the development set of the
Native Language Sub-Challenge.

2.3. Results

We evaluated the different feature sets by applying Support-
Vector Machines (SVM, [16]) with a linear kernel, using the
libSVM library [24]. The value of C was tested in the range
10{−5,...,1}. The results for this can be seen in Table 1 above.
Our scores for the standard, 6373-item feature set are slightly
above the baseline scores provided in the Challenge paper for
two reasons: we used libSVM instead of Weka, and we per-
formed an energy-based volume normalization on the input ut-
terances.

What was quite surprising is that by just using the total
number and duration of the phonemes (only 94 attributes over-
all), we managed to slightly outperform the baseline accuracy
scores, and almost match our scores got by using the standard,
6373-long feature set. This is really unexpected for such a
compact and simple feature set, and in our opinion it indicates
that attempting to identify the native language of the speaker
based on the phonetic-level ASR output is a viable approach.
By using the features extracted from the frame-level DNN out-
puts, we even managed to significantly outperform the baseline
scores; and by combining them with the standard feature set
we achieved accuracy scores significantly above the baseline
score. In fact, combining all the above-mentioned features led
to a UAR score of 63.1% on the development set, which means
a 32% relative error reduction compared to the baseline.
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3. Classification Methods and Refinements
After describing the feature extraction step, we turn to the next
phase: that of classification. Besides describing the classifica-
tion algorithms utilized for both sub-challenges, we will explain
the other techniques applied: DNN model output aggregation,
the sampling methods and a classifier combination approach.

3.1. Classifier Methods

We utilized three methods for classification. First, we applied
Support-Vector Machines [16] with a linear kernel. The value
of C was again tested in the range 10{−5,...,1}. Then for both
tasks we trained 10 randomly initialized Deep Rectifier Neu-
ral Networks (DNN, [18]) having three fully connected hidden
layers, each containing 100 and 500 neurons for the Deception
and the Native Language sub-challenges, respectively. We used
our custom implementation, originally developed for phoneme
classification, by which we achieved a good performance in the
previous ComParE Challenges [22, 25]. Finally, we applied Ad-
aBoost.MH [17, 26] using stumps as base learners, because we
also got good results previously with it (e.g. [5, 25, 27]). The
meta-parameters of each method (C for SVM, number of itera-
tion for AdaBoost.MH) were set using the development set for
both sub-challenges.

3.2. DNNModel Output Aggregation

Training a neural network is a non-deterministic procedure due
to the random initial weight values. To reduce this effect of un-
certainty, it is common to train several models with the same
parameters, and aggregate their outputs in some way. Perhaps
the most commonly used way of aggregating outputs is via sim-
ple majority voting: we choose the class label which was sup-
ported by the largest number of models. It can be readily ap-
plied to neural networks, but it is well known that DNNs are
able to produce accurate posterior scores; unfortunately, this in-
formation is lost during simple majority voting. So we used
the technique called probabilistic voting [25]: for each example
and each class we averaged out the output posterior values of all
models, and chose the class where this value was the highest.

3.3. Instance Re-Sampling

Most machine learning algorithms are sensitive to class imbal-
ances, and tend to behave inaccurately on classes having only a
few examples. Since in the Deception Sub-Challenge the distri-
bution of the D and ND classes was unbalanced to the extent that
even the baseline included the upsampling of the D class (i.e.
using the same training examples several times), we decided
to experiment with sampling methods for this sub-challenge.
For DNN, we applied the sampling method called probabilis-
tic sampling [28, 29]. It is a simple two-step sampling scheme:
first we select a class, then randomly pick a training sample
from the samples of this class. Selecting a class can be viewed
as sampling from a multinomial distribution after we assign a
probability to each class:

P (ck) = λ
1

K
+ (1− λ)P0(ck), (1)

where P0(ck) is the prior possibility of class ck, K is the number
of classes and λ ∈ [0, 1] is a parameter. If λ is 1, then we get
a uniform distribution over the classes, and with λ = 0 we
get the original class distribution. Choosing a value between 0
and 1 for λ allows us to linearly interpolate between these two
distributions.
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Figure 2: Accuracy and UAR scores got on the development
set of the Deception Sub-Challenge for DNN probabilistic sam-
pling.

The value of the λ parameter was set on the development
set. The accuracy and UAR scores we got can be seen in Fig. 2.
It is clear that DNNs optimize for accuracy by default (λ = 0);
by increasing the value of λ, the UAR scores tend to rise, while
accuracy tends to drop. In the end we used the optimal value of
λ = 0.9 in our later experiments.

For SVM and AdaBoost.MH, we did not have the option of
using probabilistic sampling, as we utilized standard libraries
(libSVM [24] and multiboost [26]). Therefore we experimented
both with upsampling and downsampling (i.e. not using all the
training instances) to balance the class distribution. We trained
several models for AdaBoost.MH, so we selected the training
set randomly for each training.

M.L. Method Sampling Acc. UAR
— 69.8% 58.1%

SVM Upsampling 67.9% 62.6%
Downsampling 62.8% 62.8%

DNN — 74.3% 51.5%
Probabilistic 69.5% 64.7%
— 72.6% 57.1%

AdaBoost.MH Upsampling 72.2% 57.3%
Downsampling 66.7% 62.5%

ComParE baseline [12] 70.2% 61.1%

Table 2: Accuracy and UAR scores got by using the different
classifier and sampling methods on the development set of the
Deception Sub-Challenge.

Table 3 shows the accuracy and UAR scores achieved by using
the different re-sampling strategies. It is cleat that re-sampling
greatly improved the performance of each method; it was a
bit surprising, though, that for AdaBoost.MH, downsampling
(i.e. discarding training examples) worked better. Although for
SVM, downsampling was slightly better that upsampling UAR-
wise, due to the much higher accuracy score we decided that
we should use upsampling later. In the following experiments
carried out on the Deception Sub-Challenge, we always applied
instance re-sampling during classifier model training.
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Dev. Test
Method Acc. UAR Acc. UAR
SVM (upsampling) 67.9% 62.6% — —
DNN (prob. sampling) 69.5% 64.7% 69.8% 68.6%
AdaBoost.MH (downs.) 66.7% 62.5% — —
SVM + DNN 69.3% 64.0% 70.6% 67.7%
SVM + AdaBoost.MH 67.5% 62.8% — —
DNN + AdaBoost.MH 66.9% 61.9% — —
All three methods 67.7% 62.9% — —
ComParE baseline [12] 70.2% 61.1% — 68.3%

Table 3: Accuracy and UAR scores got by using the different
classifier methods on the Deception Sub-Challenge.

3.4. Classifier Combination

It is well known that a good combination of the original clas-
sifiers may reinforce their advantages. This may explain the
interest in classifier combination techniques in several areas of
Artificial Intelligence (e.g. [30, 31]), and also in speech recog-
nition [32, 33]. In our previous experiments (such as our con-
tribution submitted for the Eating Sub-Challenge for ComParE
2015 [11]), we found that a quite robust way of combining dif-
ferent kinds of classifiers is to aggregate their class-wise poste-
rior scores. We will now also apply this strategy here.

We combined our three classifier methods by taking the
mean of their posteriors for each example and class, and chose
the class for each example which had the highest posterior
score. Getting posteriors is quite easy for SVM; for DNNs we
used the aggregated likelihood estimates of several trained mod-
els (see Section 3.2). For AdaBoost.MH, we trained 1000 mod-
els independently, and for each example we counted how many
models voted for each class; these values were then used as pos-
terior estimates after normalizing their sum to one. To calibrate
the different distribution of likelihoods for the three methods,
we first normalized the vote vectors of the different classifica-
tion methods so as to have the same standard deviation.

4. Results
4.1. Deception Sub-Challenge

Table 3 shows the values achieved by using the different clas-
sifier methods on the development and on the test sets of the
Deception Sub-Challenge. We can see that, although we were
able to outperform baseline SVM on the development set, this
was true for the test set only to a limited extent: with DNN
alone, we managed to get a higher UAR value than the base-
line by a mere 0.3%, but this is quite different from the 3.6%
improvement measured on the development set. And although
combining DNN with SVM led to a slight gain in accuracy, it
led to a slight drop in the UAR value. In our opinion this can
be attributed to the small size and the unbalanced nature of the
dataset. Of course, the fact that we used a different SVM imple-
mentation and a slightly different instance re-sampling method
might also affect the scores we obtained.

4.2. Native Language Sub-Challenge

Table 4 shows the results we got by applying the classifier meth-
ods on the development and on the test sets of the Native Lan-
guage Sub-Challenge. As input we used the extended feature
set described in Section 2. Although the construction of this
20003-long feature set was achieved by utilizing SVM, we got

Dev. Test
Method Acc. UAR Acc. UAR
SVM 62.9% 63.1% — —
DNN 64.5% 64.5% 62.9% 62.9%
AdaBoost.MH 69.3% 69.3% 69.2% 69.2%
SVM + DNN 64.5% 64.7% — —
SVM + AdaBoost.MH 70.1% 70.1% — —
DNN + AdaBoost.MH 70.7% 70.7% 70.0% 70.1%
All three methods 69.0% 69.1% — —
ComParE baseline [12] 44.9% 45.1% — 47.5%

Table 4: Accuracy and UAR scores got by using the different
classifier methods on the Native Language Sub-Challenge.

better scores on it with DNNs. This is probably because this
task is fairly large by computational paralinguistics standards:
the training set consists of 3300 utterances, and the development
and test sets are roughly 1000 recordings long each. With such
a high number of samples a DNN can be trained quite reliably.
However, AdaBoost.MH performed even better, and by a large
amount. In our opinion this is probably due to the diversity of
this feature set. Recall that the 20003 attributes consist of the
standard paralinguistic features, phoneme occurrence counts,
and means and standard deviations of DNN outputs. Our hy-
pothesis is that different normalization techniques are optimal
for these different kinds of attributes, while we always used
standardization both for SVM and DNN. AdaBoost.MH, how-
ever, does not require any kind of normalization, hence it is not
affected by a suboptimal normalization procedure.

As regards classifier combination, we can see that if we
combine AdaBoost.MH with either SVM or DNN, the accuracy
and UAR scores improve. However, by combining all three
methods, these values drop, which is probably due to the fact
that, in this case, AdaBoost.MH has only a weight of 1/3.

Overall, on the test set we observed pretty similar tenden-
cies to those seen on the development set. Even combining
DNN with AdaBoost.MH yielded a 1% improvement in both
accuracy values. In the end we achieved a UAR value of 70.1%,
which is way above the 47.5% score of baseline SVM.

5. Conclusions
In this study, submitted for the Computational Paralinguistic
Challenge (ComParE) of Interspeech 2016, we focused on to
two classification tasks: the Deception and the Native Language
sub-challenges. We utilized three different classifier methods
(SVM, DNN and AdaBoost.MH) and also tried out a robust
classifier output combination approach. Furthermore, we uti-
lized instance re-sampling techniques for the Deception Sub-
Challenge, while we extracted various acoustic features for
the Native Language Sub-Challenge. The accuracy scores of
our methods revealed that instance re-sampling is essential for
achieving competitive scores in the Deception Sub-Challenge.
For the Native Language Sub-Challenge, however, we found
that our feature extraction approach is a viable one for L1 lan-
guage determination: with quite basic features such as the num-
ber of the different phonemes found in the utterances, we were
able to practically match the baseline score got using the stan-
dard 6373-long feature vector. By extracting further features
we outperformed the baseline method by a large amount even
on the unpublished test set, although it seems that the way of
normalization significantly affects the accuracy values.
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[15] H. Behravan, V. Hautamäki, and T. Kinnunen, “Factors affecting
i-vector based foreign accent recognition: a case study in spoken
Finnish,” Speech Communication, vol. 66, pp. 118–129, 2015.

[16] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R.Williamson, “Estimating the support of a high-dimensional dis-
tribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471,
2001.

[17] R. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning, vol. 37, no. 3,
pp. 297–336, 1999.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier net-
works,” in Proceedings of AISTATS, 2011, pp. 315–323.
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B. Kégl, “MultiBoost: a multi-purpose boosting package,” Jour-
nal of Machine Learning Research, vol. 13, pp. 549–553, 2012.

[27] G. Gosztolya, “Is AdaBoost competitive for phoneme classifica-
tion?” in Proceedings of CINTI (IEEE), Budapest, Hungary, Nov
2014, pp. 61–66.
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