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Abstract
This paper shows that exemplar-based speech processing us-
ing class-conditional posterior probabilities admits a highly
effective search strategy relying on posteriors’ intrinsic spar-
sity structures. The posterior probabilities are estimated for
phonetic and phonological classes using deep neural network
(DNN) computational framework. Exploiting the class-specific
sparsity leads to a simple quantized posterior hashing procedure
to reduce the search space of posterior exemplars. To that end,
small number of quantized posteriors are regarded as represen-
tatives of the posterior space and used as hash keys to index sub-
sets of neighboring exemplars. The k nearest neighbor (kNN)
method is applied for posterior based classification problems.
The phonetic posterior probabilities are used as exemplars for
phonetic classification whereas the phonological posteriors are
used as exemplars for automatic prosodic event detection. Ex-
perimental results demonstrate that posterior hashing improves
the efficiency of kNN classification drastically. This work en-
courages the use of posteriors as discriminative exemplars ap-
propriate for large scale speech classification tasks.
Index Terms: Fast kNN, Structured sparsity, Quantized poste-
rior hashing, Posterior representatives, Phonetic classification,
Automatic prosodic event detection.

1. Introduction
Exemplar-based speech processing provides a powerful big data
solution for potentially a wide range of speech applications. In
particular, speech classification relying on exemplar matching
possesses higher flexibility than the statistical methods due to
lack of prejudices on data and expected answers. The funda-
mental question that yet remains is the application-specific ap-
propriate choice of exemplars. The present manuscript rein-
forces the position of deep neural network (DNN) based class-
conditional posterior probabilities (hereafter referred to as pos-
teriors) as a great choice of exemplars for speech classification
tasks.

In theory, if infinite number of exemplars of continuous
probability density functions are provided, a simple nearest-
neighbor rule leads to optimal classification [1]. In the context
of speech recognition, the nearest-neighbor based techniques
have been used as non-parametric methods to perform class-
conditional posterior probability estimation for acoustic model-
ing [2, 3]. Typical choice of exemplars are variants of spectral
features [4, 5], and approximate neighborhood search strategies
are tailored to provide tractable frameworks [2].

Application of hashing in nearest neighbor search enables
splitting the search space into buckets each identified with a

unique hash key. The exhaustive search space is thus down-
sized to the corresponding bucket sizes [6]. In this context, the
hash function ensures locality preserving of similar/neighboring
data while the whole space is spanned in disjoint splits [7]. In
posterior space, as we will see further in this paper, all above es-
sential features are obtained through a simple linear posterior
quantization to generate the hash keys as posterior representa-
tives, and populate the corresponding buckets of neighboring
posterior vectors.

DNN posteriors live in union of low-dimensional/structured
sparse subspaces [8, 9]. Exploiting this property enables hierar-
chical speech recognition and classification frameworks based
on sparse modeling of phonetic posterior exemplars [10, 11].
Furthermore, the low-dimensional subspaces can be modeled
through dictionary learning for sparse representation, and pro-
jection of the posteriors into the space characterized over the
training data reduces the mismatch of the testing posteriors,
and leads to enhanced acoustic modeling for speech recogni-
tion [8, 9]. In addition to the phonetic posteriors, our pre-
vious studies on phonological posteriors show that they con-
form to a small number of unique binary structures which are a
tiny fraction of the number of permissible codes [12]. Exploit-
ing this property enables construction of a small-size codebook
for very low-bit rate speech coding [12, 13]. More recently,
we also found structured sparsity of phonological posteriors
highly effective for classification of supra-segmental linguistic
events [14].

In this paper, we propose a novel application of structured
sparsity of posterior probabilities in devising an effective hash-
ing technique to reduce the search space of posterior exem-
plars. Motivated by the idea of locality sensitive hashing for
fast neighborhood search [7], the geometric locality in the space
of posteriors can be defined by thresholding the high probabil-
ity components at multiple quantized levels. As the variability
in the space of posteriors is largely confined to the underlying
class probabilities, grouping the posteriors according to their
quantized codes ensures the actual neighbors in disjoint buck-
ets. The posteriors are investigated at two levels corresponding
to phonetic and phonological classes. In the former case pho-
netic classification is evaluated, whereas in the latter case au-
tomatic prosodic event detection is performed, both based on
k nearest neighbor (kNN) search using the quantized posterior
hashing technique.

In the rest of the paper, the posterior hashing theory is de-
scribed in Section 2. Experimental studies are carried out in
Section 3, and the conclusions are drawn in Section 4 with an
outlook to development of large scale, fast and flexible speech
applications relying on DNN posterior exemplars.
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2. Quantized Posterior Hashing
Inspired from the idea of locality sensitive hashing [7], a deter-
ministic procedure for posterior space hashing is proposed. This
procedure relies on structured sparsity of posterior subspaces to
characterize the geometric localities, and enables search space
reduction for neighborhood analysis of posterior exemplars.

2.1. Structured Sparsity

Phonetic and phonological posterior estimation requires speech
analysis that turns a sequence of N acoustic feature observa-
tions X = {x1, . . . ,xn, . . . ,xN} into a sequence of N poste-
rior probability vectors Z = {z1, . . . , zn, . . . , zN} where

zn = [p(C1|xn), . . . , p(Cq|xn), . . . , p(CQ|xn)]
>

consists of Q class-conditional posterior probabilities, and .>

denotes the transpose operator. DNN is the state-of-the-art com-
putational method to estimate the posterior probabilities. A sin-
gle DNN is employed to estimate the phonetic posteriors. As for
the phonological posteriors, a binary classifier DNN is used for
estimation of any individual class probability; thus the output of
multiple parallel DNNs are concatenated to form the phonolog-
ical posterior vector (details in 3.1– 3.2).

Figure 1 depicts a sample of phonological and phonetic pos-
teriors estimated for an utterance of speech signal. The left plots
illustrate the binary quantized posteriors of the continuous prob-
abilities depicted in the right plots. An exclusive class-specific
sparsity structure is evident for phonetic posteriors which is per-
tained to the DNN exclusive mapping to the hard output pho-
netic labels. As a result, the class-specific subspaces are highly
structured, and the matrices of class-specific phonetic posteri-
ors have a very low-rank [8, 9]; the phonetic posteriors live in
union of these low-dimensional subspaces.

On the other hand, the restricted multi-class probabilities
are visible at phonological posteriors. As the phonological
classes correspond to sub-phonetic attributes, multiple classes
are activated for generation of a sub-word unit, however, their
combination is confined to a small permissible activation of ar-
ticulatory mechanisms as determined in a phonological system
(for example the well-known Sound Pattern of English [15]).
These permissible combinations define the sparsity structures
underlying phonological posteriors [12]. In both phonetic and
phonological illustrations, the sparse vectors exhibit a sequenc-
ing structure inherited from the input acoustic feature obser-
vations. More details about the DNN setup for estimation of
posteriors, their dimension and databases will be described in
Sections 3.1– 3.2.

2.2. Quantized Posterior Representatives are Hash Keys

Relying on the structured sparsity of posteriors, we devise a
hashing technique to divide the space into smaller size buckets
of neighboring posteriors.

As already discussed in Section 2.1, posterior exemplars
are sparse vectors living in union of low-dimensional subspaces.
Hence, for any posterior vector, the probabilities are confined to
a very small number of components where the indices of high
probabilities identify the unique structure of the underlying sub-
space. Accordingly, the number of unique quantized posteriors
is relatively small with respect to the sample size, and the quan-
tized posteriors can be regarded as representatives of the pos-
terior space. The quantized posterior representatives are used
as hash keys for splitting the space into geometric neighbors.
The following hashing formula expresses this method through
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Figure 1: Posteriograms of phonological and phonetic posteri-
ors. Quantized posteriors are representatives of the posterior
space that can be used as the hash keys for effective nearest
neighbor search.

different levels of quantization.

H(z) =

⌊
2bz
⌋

2b
(1)

where z is a posterior probability vector, and b is the number of
bits for quantization.

The quantized posterior hashing divides the search space
into disjoint buckets where the number of buckets is propor-
tional to the number of classes. In theory, the number of classes
is equal to the dimension of DNN outputs for phonetic poste-
riors, or equal to the number of permissible combinations of
the phonological classes as defined in the phonological system.
Our experimental studies conducted in Section 3.3 demonstrate
this proportionality. As the number of permissible combina-
tions is relatively large in a phonological system, we will see in
Section 3.4 that even the binary posterior hashing leads to ef-
fectively small-size buckets encapsulating similar posterior ex-
emplars.

As the number of quantization bits b is increased, the buck-
ets will define finer localities. By fixing a minimum bucket size,
a hierarchical hashing can be devised for search space index-
ing, and the neighborhood search is accomplished for the finest
matched quantization key (details in 3.3).

This hashing technique can be combined with kNN to en-
able efficient posterior classification. In this approach, the quan-
tized posteriors are used to identify the neighboring exemplars
(the relevant bucket) while kNN is performed on continuous
representations. We will see in Sections 3.3– 3.4 that this sim-
ple hashing idea can reduce the search space of posteriors dras-
tically.

2.3. Analysis and Cost

In theory, quantization of every component of posteriors in b
bits leads to splitting the space in maximum K = 2bQ disjoint
regions. Accordingly, the size of training data in each bucket
can be reduced to an average N/2K . The minimum similarity
occurs for the vectors at the boundaries; therefore, the maxi-
mum distance of the two vectors z1 and z2 with equal hash
keys is approximately

d(H(z1), H(z1) +
1

2b
1K)
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where 1K is an all-ones vector of dimension K. Hence, the
probability of negative examples in a bucket is equal to the
probability of having two values closer than 1

2b
in every dimen-

sion. Since the posteriors are between 0 and 1, this probability is
p = 1

2b
. The negative examples occur when the K-dimensional

keys of the two posteriors of different classes are equivalent,
therefore, negative examples have the probability of 1 − pK .
Since the typical number of Q is often more than 10, this hash-
ing function leads to a very small probability of encapsulating
negative examples or similarly wrong positive examples in the
same bucket.

In practice, the number of non-empty buckets is very small,
and by considering a large minimum number of exemplars per
bucket, the number of effective hash keys for each class is pro-
portional to ‖b2bE(z|Cq)c‖0), where E(z|Cq) denotes the en-
semble average of the posterior vectors belonging to class Cq ,
and ‖.‖0 is the number of non-zero components. The total num-
ber of hash keys is thus related to

∑Q
q=1 ‖b2

bE(z|Cq)c‖0.

3. Experimental Results
In this section, we evaluate the effectiveness of hashing for
neighborhood search of posterior exemplars. Two kNN tasks
are investigated, namely, phonetic classification using phone
posteriors, and automatic prosodic event detection using phono-
logical posteriors.

3.1. DNN Setup for Phonetic Posteriors

The phonetic classification is conducted on AMI corpus [16].
A DNN is used to estimate the phonetic posterior probabilities,
and implemented using Kaldi toolkit [17]. Its architecture con-
sists of three hidden layers with 1024 nodes. The input features
of the DNN are Mel-frequency cepstral coefficients (MFCC)
concatenated with the first and second order dynamic features
using a context of 9 frames, and estimated for every 10ms of
speech. The DNN outputs are hard labels corresponding to 43
dimensional English phonetic classes. The training labels are
obtained from hidden Markov model (HMM) force alignment
using speech transcription. We use the standard splitting of
training, development and test data as performed in [18].

3.2. DNN Setup for Phonological Posteriors

The Wall Street Journal WSJ0 and WSJ1 continuous speech
recognition corpora [19] are used for training the phonologi-
cal class detectors. Phonological detectors are trained on the
training set si tr s 284 including 37,514 utterances using the
Government Phonology (GP) phonological features [20, 21].
For each phonological class, a 3x1024 DNN is initialized by
deep belief network pre-training of [22], and trained using Kaldi
toolkit. The DNN output is trained as either 1 or 0 if the phono-
logical class is present or not. Hence, each DNN estimates the
probability of occurrence of one phonological class. The out-
puts of all DNNs are concatenated to form a phonological pos-
terior vector.

To perform prosodic event detection experiments, the GP
posteriors are estimated on a labeled subset taken from the SI-
WIS database [23]. The dimension of phonological posteriors is
12 according to the GP phonological system that consists of the
three basic resonance phonological primes commonly labeled
as A, U, I, denoting the peripheral vowel qualities [a], [u] and
[i] respectively. Other vowels are defined by a composition of
the basic ones, such as [e] results in fusing the I and A primes.
In addition to these ‘vocalic’ primes, GP proposes also the ‘con-

sonantal’ primes. The evaluation data consists of recordings of
10 training and 3 testing English speakers. Each speaker reads
about 25 sentences, among which 5 questions, with focus (em-
phasis) on one predefined word. The corresponding transcrip-
tion for each sentence was given, with a tag on the words that the
speakers were asked to emphasize. Hence, the goal of prosodic
event detection is basically detection of emphasized segments
in an utterance where the boundary of the segments are known
beforehand, i.e. a top-down detection scenario.

3.3. Fast kNN for Phonetic Classification

The cosine similarity is used in kNN search for phonetic clas-
sification [24]. The value of k for exhaustive search kNN is
chosen as 150; for hashing-based kNN at binary level, it is cho-
sen as 20, and for higher levels, it is 11 using the 10-fold cross
validation. We perform classification of a random selection of
50k test posteriors using the labeled development posteriors.

The hash keys are obtained at different quantization levels.
The minimum bucket size is fixed to 500, so if a hash key results
in less than 500 neighborhood posteriors, it is discarded. For
any test posterior, hashing can be implemented in a hierarchical
procedure. The test hash keys at multiple quantization levels
are obtained and compared with the available hash keys of la-
beled data using Jaccard similarity [25], then the finest matched
key with Jaccard similarity = 1 is used to determine the bucket
of neighboring posteriors. This procedure leads to multi-level
hashing (mul-h). Alternatively, the single level quantization
codes are used to obtain the hash keys where the bucket with
the closest key (even if the Jaccard similarity is smaller than 1)
is used for neighborhood search. This procedure leads to single
level hashing (sin-h). Once the bucket of neighboring posteri-
ors is identified, kNN is performed on continuous representa-
tions. The results of kNN phonetic classification performance
are listed in Table 1.
Table 1: kNN Phonetic classification accuracy using single
level (sin-h) and multi-level (mul-h) quantized posterior hash-
ing on AMI database.

b #Buc. Search size Ac. (sin-h) Ac. (mul-h)
64 1 3’174’011 70.3% 70.3%
1 42 60’447 69.9% 69.9%
2 319 9’371 69.6% 69.9%

We observe that when the number of buckets is very small,
and the search space can be reduced drastically (by a factor
of ∼319 using 2 bits quantization) with small degradation in
kNN classification accuracy. At 2 bits quantization level, the
ratio of posteriors with a similar hash key is 94.2%. The hash
keys can be stored as binary vectors to enable fast binary match-
ing to find the appropriate bucket, and parallel matching of the
hash keys at multiple levels minimizes the computational over-
head. In addition, the testing posteriors with different hash keys
can be processed independently in parallel streams that can lead
to higher speed up in exemplar based frameworks.

3.4. Fast kNN for Automatic Prosodic Event Detection

The information of linguistic and prosodic events at supra-
segmental level is encoded in phonological attributes, thus
classification of higher-level events (such as lexical stress or
prosodic accent) is feasible exploiting the structure of high
probability phonological posteriors [14]. In this section, we
study emphasis detection based on nearest neighbor search us-
ing phonological posteriors; Jaccard similarity [25] is used to
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Figure 2: Distinct structured sparsity of phonological posteri-
ors depicted for two pronunciation of the phoneme “I” in un-
emphasized and emphasized words.

find the nearest neighbor.
This method relies on the hypothesis that phonological

posteriors encode information about the emphasized or un-
emphasized speech utterances in the support of their high prob-
ability components. The support can be identified using quan-
tization at different levels. Figure 2 illustrates an example of
binary structures underlying un-emphasized and emphasized re-
alizations of phoneme “I”. The difference in the binary patterns
is evident. To visualize this property in a larger scale, we plot
the t-distributed stochastic neighbor embedding (tSNE) [26] of
arbitrary selection of 1000 frames of phonological posteriors
with and without emphasis in Figure 3.

This empirical observation suggests that the binary struc-
tures of phonological posteriors are indicative of their empha-
sized nature, thus they can be regarded as representatives of
emphasis and un-emphasis variability of phonological poste-
riors. Accordingly, the binary structures are used as the hash
keys to split the space into buckets of neighboring exemplars.
The nearest neighbor rule is then used for emphasis detection
on a frame basis; the frame-level decisions are pulled within the
known boundaries to make a supra-segmental decision based on
majority counting. The results are listed in Table 2.

Table 2: Emphasis detection using phonological posterior hash-
ing on SIWIS database.

b #Buckets Avg bucket-size Accuracy
64 1 100’284 87.1%
1 405 222 93.5%

We can see that the search space of posterior exemplars is
reduced by extracting the binary codes, however, the number
of buckets (unique hash keys) is more than the binary codes of
phonetic posteriors. This can be explained due to the definition
and training of phonological posteriors which results in high
probability components corresponding to multiple phonological
classes (as opposed to phonetic posteriors which often have a
single high probability component).

Furthermore, unlike phonetic posterior hashing, we do not
enforce any constraint on the bucket size since the best value
of k is found to be 1 for this task. During the nearest neighbor
search, if a binary code does not perfectly match the training
hash keys, the most similar code quantified in terms of Jaccard
similarity is used. We can see that binary hashing of phonologi-
cal posteriors enables restriction of the search space to the more
“correct” exemplars as the classification improves through this
confined search.

-50 -40 -30 -20 -10 0 10 20 30 40 50

2D tSNE - dim1

-40

-30

-20

-10

0

10

20

30

40

50

2
D

 t
S

N
E

 -
 d

im
2

Red squares: emphasized - Blue crosses: un-emphasized

Figure 3: tSNE visualization of binary phonological posteriors
with and without emphasis.

4. Conclusions and Future Directions
Posterior exemplars are sparse and live in union of low-
dimensional subspaces. In this paper, a novel application of
this property was proposed by introducing the quantized pos-
terior hashing technique to enable an effective search strategy
confined to the local neighborhood of posterior exemplars. The
quantized posteriors are regarded as the representatives of the
posterior space. It was shown that the number of unique hash
keys or equivalently the number of buckets is very small that
leads to tremendous reduction of the search space with negligi-
ble overhead. This method enables very fast and accurate kNN
search for phonetic classification and automatic prosodic event
detection.

The number of unique hash keys or different buckets is re-
lated to the sparsity level or the number of permissible classes.
Since the “optimal” phonetic posteriors indicate a single highly
probable class, the number of buckets is proportional to the
number of phones. In contrast, the phonological posteriors
are indicative of sub-phonetic attributes presented at multiple
phonological class probabilities, hence, the number of unique
hash keys is proportional to the size of permissible combi-
nations as roughly quantified at binary quantization. In fact,
binary level hashing is found very efficient for neighborhood
search of phonological posterior exemplars.

Future work will focus on development of fast and flexible
large scale ASR in a hierarchical exemplar based framework
relying on the generic low-dimensional properties of DNN pos-
terior exemplars. Furthermore, we will investigate other supra-
segmental linguistic event detection tasks using structured spar-
sity of phonological posteriors. Higher semantic information
can be integrated with the bottom-up approach towards develop-
ment of exemplar based ASR framework that can exploit broad
contextual information. Moreover, the neural network posterior
estimation can be seen as a hash function of any type of speech
acoustic features such as spectral features. Hence, exemplar-
based speech classification can potentially benefit from the pro-
posed quantized posterior hashing method at any speech repre-
sentation level. We will study this idea in future developments.
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