
Joint Speaker and Lexical Modeling for Short-Term Characterization of
Speaker

Guangsen Wang, Kong Aik Lee, Trung Hieu Nguyen, Hanwu Sun, Bin Ma

Institute for Infocomm Research, A?STAR, Singapore
{wang-g,kalee,mabin,hwsun,thnguyen}@i2r.a-star.edu.sg

Abstract
For speech utterances of very short duration, speaker charac-
terization has shown strong dependency on the lexical content.
In this context, speaker verification is always performed by ana-
lyzing and matching speaker pronunciation of individual words,
syllables, or phones. In this paper, we advocate the use of hid-
den Markov model (HMM) for joint modeling of speaker char-
acteristic and lexical content. We then develop a scoring model
that scores only the speaker part rather than the joint speaker-
lexical component leading to a better speaker verification per-
formance. Experiments were conducted on the text-prompted
task of RSR2015 and the RedDots datasets. In the RSR2015,
the prompted texts are limited to random sequences of digits.
The RedDots dataset dictates an unconstrained scenario where
the prompted texts are free-text sentences. Both RSR2015 and
RedDots datasets are publicly available.
Index Terms: Text-Prompted, Text-Dependent, Speaker Verifi-
cation, Speaker Adaptation, Hidden Markov Model

1. Introduction
Speech utterances are acoustic realizations of word se-
quences [1]. The lexical content manifests itself and conflates
with the vocal characteristic of the person uttering it. For
speaker recognition, we are interested in the speaker charac-
teristic while taking all other factors including the lexical con-
tent and channel effects as nuisance attributes [2]. For ease of
modeling, it is always assumed that the speaker characteristic is
independent of the spoken content [3, 4]. Such assumption gen-
erally holds when sufficiently long utterances are given. In this
context, models like joint factor analysis (JFA) [3] and the total
variability model [5], have shown to be extremely effective.

For speech utterances of very short duration (i.e., in the or-
der of few seconds), speaker characteristic has shown signifi-
cant dependency on the lexical content [6, 7, 8]. It is therefore
beneficial to model both speaker and spoken content jointly,
for instance, modeling of speaker pronunciation of individual
words, syllables, or phones. This marks the major difference
between text-dependent (TD) [6] and text-independent (TI) [2]
models for speaker verification. The main idea of the former
is to directly exploit the voice individuality associated with a
specific lexical context. In this paper, we advocate similar form
of joint speaker-lexical modeling approach for text-prompted
speaker verification.

Recently, phoneme adaption scheme [9] has been used un-
der the JFA framework for the digit-prompted speaker veri-
fication task, where a phonetic independent universal back-
ground model (UBM) was adapted by maximum a posteriori
(MAP) [10] adaptation to characterize speaker and digits. In-
stead of relying on a single UBM, we choose to use a phonetic-

dependent model, where hidden Markov model (HMM) is used
to cover the lexical variability. Speaker adaptation is then per-
formed by adapting the phonetic model to a speaker-dependent
(SD) phonetic model. During test, a composite HMM is con-
structed to score the test utterance under the lexical context
given by the prompted text. Notice that our intention here is dif-
ferent from the automatic speech recognition (ASR) task where
the objective is to produce word sequence as the output. To this
end, we look into the speaker verification score where our aim
is to evaluate only likelihood of the speaker component rather
than the speaker-lexical components due to the joint modeling.
In particular, we show that the likelihood score associated with
lexical content could be suppressed by discarding the state tran-
sition probabilities followed by normalization with respect to a
speaker-independent (SI) phonetic model. Moreover, we also
look into strategy to reject target trials with wrong text using
just the likelihood score.

Compared to TD task, text-prompted task is more chal-
lenging in which user is prompted to provide utterance of ran-
dom text every time the system is used. The prompted texts
could be random sequences of keywords from a constrained set
(e.g., digits) or unconstrained free-text sentences. In this paper,
we aim to investigate both scenarios using two publicly avail-
able datasets. For the former, experiment was conducted on
Part III of RSR2015 database [6]. For the unconstrained sce-
nario, experiment was conducted on the newly acquired Red-
Dots dataset [11]. Notably the RedDots dataset is the formal
dataset for the INTERSPEECH 2016 RedDots challenge.

The remaining of the paper is organized as follows. Sec-
tion 2 details the joint speaker and lexical modeling. Various
scoring schemes are discussed in Section 3. Experimental re-
sults on the RSR2015 and RedDots corpora are presented in
Section 4 and Section 5 respectively. Section 6 summarizes the
findings and concludes the paper.

2. Speaker and lexical modeling
2.1. Speaker independent model

Lexical content can be represented at a number of levels, from
words to syllables, phones or below [1]. Among these, phone,
or more precisely tri-phone is the most common choice used in
modern speech recognition system. These acoustic modeling
units are usually modeled using HMMs. Due to the physiolog-
ical limitations in the speech production of individual speaker,
the realizations of the same acoustic unit are never the same.
In this regard, the transition between HMM states accounts for
the temporal variance, while the state probability distribution
models the acoustic variation.

Let N be the number of phones, for instance, N = 40 is
typical for English. Considering the left and right contexts, the
number of tri-phone HMM models is N3. With a proper ty-
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Figure 1: Speaker enrollment via MAP
ing of states across the HMMs, the number of tied sates (i.e.,
senones) can be reduced considerably to be a few hundreds,
while the number of Gaussian mixtures could be kept within
a thousand (we used 512 Gaussian components in our exper-
iments). This number is equivalent to that used for UBM in
text-independent speaker verification. The difference here is
that the Gaussian components are distributed among the tied
states. Phone model is the obvious choice when the number
of words is considerably large. Text-prompted speaker verifi-
cation could be performed by constraining the vocabulary, for
instance, to consist of digits from zero to nine. Under this sce-
nario, whole word model is a better alternative. In addition to
smaller number of models, word-based HMM could model the
co-articulation effects within words better. Also, it is generally
believed that speaker discriminant information presents mostly
in such transitive regions of speech.

Given the speech recordings with orthographic transcrip-
tions, HMM parameters are estimated by embedded train-
ing [12], where a graph of HMM models is composed according
to the transcription. The forward-backward algorithm [13] is
then applied on the graph to accumulate the sufficient statistics
using the soft count, which means each frame can have non-
zero posteriors for all the HMM states. Alternatively, in Viterbi
training, the statistics are accumulated on the 1-best path. Each
frame is aligned to a single HMM state with the posterior of
1. In our setup, Kaldi [14] is used for acoustic modeling which
adopts Viterbi training.
2.2. Speaker dependent model

We train the speaker-independent (SI) model using the tran-
scribed recordings from different speakers. The SI model
thereby represents the phonetic and speaker variability that can
be observed from the background set of speakers. From a
Bayesian viewpoint, the parameters of the SI model serves as
the prior knowledge where the speaker-dependent (SD) model
could be derived. Speaker adaptation is applied to obtain the SD
models given the enrollment utterances as depicted in Figure 1.
In this way, both the lexical content and speaker characteristics
are encoded in the SD model in the form of adapted HMMs.

There are several speaker adaptation techniques prevalent in
the speech community, including the model-based MAP adap-
tation and the feature-based Constrained Maximum Likelihood
Linear Regression (CMLLR) [15] adaptation. For this study,
MAP is used since it is the most popular adaptation scheme
for the text-independent speaker verification systems [2]. MAP
aims to maximize the following posterior function:
θMAP = arg maxθ p(θ|OT

1 ) = arg maxθ p(O
T
1 |θ)p(θ) (1)

where θ is the set of HMM parameters, while OT
1 denotes the

feature vector sequence. Though the weights and covariance
matrices could also be adapted, it is customary to adapt only the
mean vectors:

µjm =
τjmµ

0
jm +

∑T
t=1 γjm(t)ot

τjm +
∑T
t=1 γjm(t)

(2)

γjm(t) =
p(ot|j,m)∑M

m′=1 p(ot|j,m′)
(3)
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Figure 2: HMM-based text-prompted speaker verification

where µ0
jm and Σ0

jm are the mean and covariance of the SI
model, µjm is the adapted mean for mixture m of state j, τ
is a mixture-dependent smoothing constant. In this paper, τ is
set to be a global constant. γjm(t) is the posterior of mixture
m of state j at time t. Note if the HMM state j is omitted, this
reduces to the relevance MAP formulation for the GMM-UBM
system used in the text-independent verification systems [16].
2.3. Text-prompted speaker verification

For text-prompted verification task, we consider four different
trial types depending on whether the speaker is the target or not
and whether the correct prompt is spoken or not. The target-
correct trial corresponds to the scenario that the correct pass-
phrase is spoken by the target speaker. The target-wrong in-
cludes the trials where the target speaker pronouncing the wrong
pass-phrase. This will typically happen if an imposter plays a
recorded speech segment of the target speaker. The imposter-
correct trials are generated by the non-target speakers produc-
ing the prompted text. Lastly, the imposter-wrong trials are pro-
duced by the imposters speaking the wrong pass-phrases. The
most straightforward approach is to use an ASR system to reject
the wrong texts in addition to a TD speaker verification system.
Besides the ASR training cost, the speakers may have different
accents, native languages, ages, etc. Moreover, the verification
environment may be very noisy. All these factors impose huge
challenges for the ASR system. Therefore, we look into strate-
gies to reject wrong-text trials using just the likelihood scores.

Figure 2 shows the flows of the speaker verification process
using the HMM-based SD and SI models. Given the prompted
text, a graph of HMM models is constructed according to a dic-
tionary. In order to get the likelihood score of the test utterance
given a model, Viterbi decoding is used to align the HMM graph
against the input speech, yielding an alignment which labels
each frame with a HMM state of the model. Once the align-
ment is available, the log likelihood of the utterance is com-
puted as a summation of the log likelihoods of each HMM state
along the alignment. Finally, a decision is made based on the
log-likelihood-ratio between the target and background model.

3. Speaker and lexical model scoring
Based on the alignments generated by the background and tar-

get models, two sets of scores can be computed, of which the
target scores comprises the contributions from both the speaker
and lexical components. In order to identify the speaker, we
need to suppress the scores associated with the lexical content.
On the other hand, to reject the wrong texts, more emphasis
should be put on the lexical components. To achieve this trade-
off, various scoring schemes are proposed in this section.
3.1. Log-likelihood score computation

As mentioned above, the likelihood scores are computed from
the alignments generated by the background and target models.
Accordingly, two scoring schemes are studied depending on the
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how the alignments are used:

Separate alignments Given an utterance, the target and back-
ground models are used to do the Viterbi decoding on
the HMM graphs to get their respective alignments. This
scoring approach has the advantage that each model will
produce the best likelihood scores since their own align-
ments are used. However, there will be mismatches be-
tween the two alignments in terms of which HMM state
a frame is aligned, adding more nuisance factors in the fi-
nal log-likelihood-ratio scores. Given an alignment and
the model parameter set, the log likelihood of a model
given the utterance X is computed as:

logP (X|θs) = 1
Ts

∑T
t=1,qst 6=sil logP (ot|θs, qst )

logP (X|θu) = 1
Tu

∑T
t=1,qut 6=sil logP (ot|θu, qut )

where Ts and Tu are the number of voiced frames from
the SD and SI alignments respectively, X represents the
frame sequence of the utterance, logP (ot|θs, qst ) is the
log likelihood of the current observation ot give the SD
state qst and θs, logP (ot|θu, qut ) is the SI model likeli-
hood given the SI parameter θu and the SI state qut . Note
that we have excluded the silence models for likelihood
computation since the silence frames do not contain any
speaker or lexical information.

Same alignment To circumvent the issues of HMM alignment
mismatches, the same alignment, generated by either the
target or the background model, can be used to com-
pute the likelihoods for both models. Although one of
the models will not produce its best score, scoring on
the same alignment guarantees that each speech frame is
scored against the same HMM model, where the back-
ground scores are computed from the SI HMM and the
target scores are obtained from the same model with
speaker adaptation. In this way, the lexical variabilities
are suppressed in the final log-likelihood-ratio scores.

For scoring with separate alignments, the log-likelihood-ratio
of the target and background model is formulated as:

Ls(X ) = logP (X|θs)− logP (X|θu) (4)

For the other scoring scheme, the ratio is computed using either
the SD (Lss(X )) or the SI (Lus (X )) alignment:

Lss(X ) = 1
Ts

∑T
t=1,qst 6=sil (logP (ot|θs, qst )− logP (ot|θu, qst ))

Lus (X ) = 1
Tu

∑T
t=1,qut 6=sil (logP (ot|θs, qut )− logP (ot|θu, qut ))

3.2. Rejecting wrong text

The alignment-based scoring schemes in section 3.1 aim to re-
move the lexical variabilities by scoring the alignments from the
same text. On the contrary, for the target-wrong and imposter-
wrong trials, the main concern is to reject the wrong texts. To
this end, this paper formulates the background scores as an
interpolation of the SI decoding and the SI alignment scores.
More specifically, the background score is computed as an av-
erage of the SI decoding and the SI alignment scores. The ra-
tional is that the SI decoding scores offer a measurement of the
acoustic model confidence given the speech segment regardless
of the text or the speaker. To compute the SI decoding score,
a special word loop is used to decode the input speech by the
background model. The obtained scores are purely generated
by the acoustic model as the word loop has all zero language
model scores.

For the trials with the wrong text, the decoding scores are
usually larger than the alignment scores as the “wrong” texts are
used for alignment. The average with the decoding scores will
increase the SI scores thus reducing the likelihood ratio for the
trials with the wrong texts. On the other hand, the effect of the
average will be much lesser for the trials with the correct texts
as the difference between the SI alignment score and decoding
score is much smaller. Taking this into consideration, the log-
likelihood-ratio for both schemes can now be computed as:

Ls(X ) =
1

Ts

∑T
t=1,qst 6=sil logP (ot|θs, qst ) (5)

−
[

1
Tu

∑T
t=1,qut 6=sil

logP (ot|θu,qut )

2
+ 1

Td

∑T
t=1,qut 6=sil

logP (ot|θu,qdt )

2

]
where logP (ot|θu, qdt ) is the decoding score of state qdt given
ot on the best path and Td is the number of voiced frames.

4. Digit-prompted speaker verification
4.1. Experimental setup

The RSR2015 [6] Part III background set is used to train
the HMM models using Kaldi [14]. Since the corpus con-
tains only ten digits from zero to nine, word-based HMMs are
adopted. The features are the standard 20-dimensional MFCCs
with its first and second derivatives yielding a dimension of 60.
No voice activity detection (VAD) is applied. For the digit-
prompted verification task, the three sequences of ten digits are
used for enrollment and the ten sequences of five digits are used
for verification. 72 out of 143 female speakers and 79 out of 157
male speakers are randomly chosen for this study. In addition,
according to the protocol in [6], session {1,4,7}, are chosen for
enrollment and the sentences from the remaining six sessions
are for testing. For acoustic modeling, each digit is modeled
as a left-to-right HMM with three emitting states and the total
number of Gaussians is 512.
4.2. Speaker verification using different scoring schemes

We then report the EERs using the speaker-adapted models with
different likelihood computation schemes in Table 1. The EERs
are computed such that the genuine scores are provided by the
target-correct trials and the non-target scores from the imposter-
correct trials. In addition, the silence model scores and the tran-
sition probabilities are excluded during likelihood computation.

Table 1: EER (%) comparison of scoring schemes
Separate

Alignments
Rescore

SI alignments
Rescore

SD alignments
Female 3.82 2.51 3.60
Male 2.87 1.01 2.14
Rescoring SI (SD) alignments denotes that the sentence

likelihood is computed on the alignments obtained from the SI
(SD) model. Comparing the three scoring schemes, using the
same alignment outperforms the separated alignment scheme
significantly, especially rescoring on the SI alignments. By us-
ing the same alignments, both the target and background scores
are computed with the same lexical constraint, i.e., the same
HMM state for each frame. Therefore, the lexical variabilities
are suppressed in the log-likelihood-ratio scores, leading to a
better speaker verification performance.

Comparing the two rescoring methods, scoring on SI align-
ments outperforms scoring on SD alignments significantly. This
can be explained by how the SD alignments are generated. For
target-correct trials, the SD alignments are generated by the
“true” speaker model, leading to better alignments. On the other
hand, for the imposter-correct trials, the SD alignments are gen-
erated by the “imposter” models, resulting in poorer alignments.

417



The latter may play a major role since the number of imposter-
correct trials is significantly larger than the target-correct trials.
This may be the reason why the scoring on SI alignments per-
forms better than the other two schemes.

Finally, if the silence models are not discarded, the EERs
for the SI alignment scoring scheme are 2.21%/2.85% for the
male and female genders respectively, a significant performance
drop compared to the EER in Table 1. This clearly shows the
importance of excluding the silence model scores for likeli-
hood computation. The best EER by recoring SI alignments
(1.01%/2.51%) is also significantly better than the best EERs
(2.64% and 4.54%) reported in [9], where five JFA-based sys-
tems were fused. Therefore, in the following experiments, the
likelihood scores are computed on the SI alignments.

5. The RedDots challenge
Finally, we evaluate the system under an unconstrained vocab-
ulary scenario on the part 4 tasks of the RedDots challenge1.

5.1. RedDots dataset

The RedDots [11] is a crowd-sourcing speech data collection
initiative started in early 2015. The heterogeneous nature of the
data is very challenging due to different handsets and the vast
lexical variabilities in the recording. More importantly, most of
the English speeches are spoken by nonnative English speakers.
Since it is still an ongoing project, we use the first release which
contains all the audited recordings up to August 17th 2015. It
has 62 speakers including 49 male and 13 female speakers from
21 countries. The total number of sessions for the current re-
lease is 572 (473 male and 99 female sessions).

5.2. Experimental setup

For large vocabulary recognition task, finer acoustic modeling
granularity is required since there will not be enough training
data to train each word. To handle the co-articulation effects,
triphone acoustic modeling are adopted [17, 18]. To model the
vast lexical contents, WSJ0 (LDC93S6A) corpus together with
the RSR2015 background set are used to train the phoneme-
based HMM models. The phone set contains 40 phones includ-
ing a silence model and each phone is modeled as a left-to-right
HMM with three emitting states using Kaldi. The number of
Gaussians is also fixed at 512 and 427 senones are obtained af-
ter decision tree state clustering [19].
5.3. Task 4: text-dependent enrollment

For the TD enrollment task, a speaker is enrolled by re-
peating one single sentence three times. The target model
is represented as a pair of speaker and enrollment sentence.
For verification, four trial types are considered, namely the
target-correct (IC), target-wrong (TW), imposter-correct (IC),
imposter-wrong (IW). The number of trials are given in Ta-
ble 2. The EERs for each trial type are given in Table 3.
Table 2: Number of trials for the Reddots challenge part 4 task

Target
Correct

Imposter
Correct

Target
Wrong

Imposter
Wrong

Female 1,122 3,906 25,806 180,462
Male 5,696 99,264 131,002 4,999,686

The likelihoods are computed on the SI alignments for both the
target and the background models excluding the silence model
scores. To reject the wrong texts, the background model scores
are obtained by an average of the SI alignment scores and the

1https://sites.google.com/site/thereddotsproject/

Table 3: EERs on RedDots challenge part 4 TD enrollment task
With Decoding Score Without Decoding Score
IC TW IW IC TW IW

Female 5.44 1.52 0.98 5.79 4.46 3.57
Male 3.67 1.62 1.19 3.79 4.25 2.99

SI decoding scores. To show the effectiveness of the SI de-
coding scores, a new set of EERs are computed using the log-
likelihood-ratios between the target and background speaker
models without the SI decoding scores. The new EERs are
given in the last three columns of the same table. As we can see,
without incorporating the SI decoding score, the EERs for the
target-wrong and imposter-wrong trials are considerably worse.

5.4. Task 4: text-independent enrollment

In the TI enrollment task, a speaker is enrolled with free-text
sentences. A total of ten sentences are used for the enrollment
and the lexical content of the enrollment sentences are not the
same. Each speaker is represented by the speaker ID only rather
than a speaker-sentence pair. The EERs are given in table 4.
From Table 4, significant EER degradation compared to the TD

Table 4: EERs on RedDots challenge part 4 TI enrollment task
Imposter
Correct

Target
Wrong

Imposter
Wrong

Female 13.72 6.24 4.74
Male 11.6 7.38 6.57

enrollment task is observed. This is expected since there are no
lexical mismatches between enrollment and verification for the
TD enrollment task. On the other hand, for the TI enrollment
task, total lexical content mismatches exist between training and
testing since the enrollment sentences do not appear in verifica-
tion. The only information that the speaker model can reply on
for the verification task is the speaker adapted senones. How-
ever, none of the speaker’s enrollment data in the current release
covers all the 40 phones. On average, each speaker’s enrollment
data cover only 34 phones. If the phones are not covered during
enrollment, they will not be adapted. Consequently, the speaker
model cannot distinguish them from the SI model, leading to
the huge degradation in performance.

6. Conclusion
We investigated the joint speaker and lexical modeling for text-
prompted speaker verification given very short utterances. A
HMM-based background model was trained to model the lexi-
cal space. Given the enrollment sentences, speaker adaptation
was then applied to the background model to get the speaker-
specific acoustic models to encode both the speaker and lex-
ical characteristics. For verification, we developed a scoring
model that scores only the speaker part rather than the joint
speaker-lexical component leading to a better speaker verifica-
tion performance. Experiments were conducted on the text-
prompted task of RSR2015 and the RedDots datasets. For
the RSR2015 task, our best single system gives an EER of
1.01% and 2.51% for male and female genders respectively us-
ing the target-correct and imposter-correct trials, a significantly
improvement over the recently published JFA-based approach
with fusion (2.65% and 4.54%). On the RedDots corpus, the
joint speaker and lexical modeling system also yields very com-
petitive results. Future work includes incorporating the DNN
bottleneck features [20] to increase the robustness of the system
against noise and channel factors.
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