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Abstract
This work proposes a method of speech enhancement that

uses a network of HMMs to first decode noisy speech and to
then synthesise a set of features that enables a clean speech sig-
nal to be reconstructed. Different choices of acoustic model
(whole-word, monophone and triphone) and grammars (highly
constrained to no constraints) are considered and the effects of
introducing or relaxing acoustic and grammar constraints inves-
tigated. For robust operation in noisy conditions it is necessary
for the HMMs to model noisy speech and consequently noise
adaptation is investigated along with its effect on the recon-
structed speech. Speech quality and intelligibility analysis find
triphone models with no grammar, combined with noise adap-
tation, gives highest performance that outperforms conventional
methods of enhancement at low signal-to-noise ratios.
Index Terms: speech enhancement, HMMs, STRAIGHT, noise
adaptation

1. Introduction
The aim of this work is to use hidden Markov models (HMMs)
for speech enhancement. HMMs have been very effective in de-
coding clean and noisy speech into word or phoneme sequences
and more recently have been applied successfully to statistical
speech synthesis [1]. HMM-based speech enhancement com-
bines these technologies by first decoding noisy speech using a
network of HMMs and then, using the same network of HMMs,
synthesises clean speech.

Historically, most approaches to speech enhancement use
filtering methods that include spectral subtraction, Wiener filter-
ing, statistical and subspace methods [2, 3, 4, 5]. More recently,
several approaches have been proposed that instead synthesise
or reconstruct a clean speech signal. For example, corpus and
inventory methods use noisy speech to identify segments from a
database of clean speech which are concatenated to form the en-
hanced speech signal [6, 7]. Methods that utilise HMMs within
the enhancement process fall into both the filtering and recon-
struction approaches. Several filtering methods have combined
clean speech HMMs and noise HMMs to model noisy speech,
with the HMMs subsequently providing speech and noise fea-
tures that are used to construct filters (e.g. Wiener filters) to
enhance the noisy speech [8, 9, 10, 11]. Conversely, recon-
struction methods have employed HMM synthesis techniques
to synthesise an estimate of the clean speech given a model and
state sequence estimated from noisy speech [12, 13].

The work proposed in this paper uses a model of speech
production to reconstruct clean speech from a set of parame-
ters obtained from a network of HMMs. Our previous work
used whole-word HMMs with a word-level grammar to decode
noisy sentences and then reconstructed noise-free sentences, but
was constrained to speech conforming to the grammar [13].
The technique is now generalised by using sub-word HMMs

and an unconstrained grammar, which removes any dictionary
and grammar constraints to enable unconstrained speech input
as would be required in a practical deployment. Investigation
is made in terms of imposing and relaxing different acoustic
model and grammar constraints and examining their effect on
speech quality and intelligibility. Furthermore, noise adapta-
tion is also now included and used to adjust the statistics of the
clean-trained HMMs to model noisy speech and thereby im-
prove decoding accuracy and the resulting speech signal.

An overview of the proposed HMM-based speech enhance-
ment is given in Section 2. Section 3 describes how a sequence
of clean feature vectors is synthesised from a network of HMMs
from a noisy input signal and how noise adaptation is applied.
Section 4 explains how the parameters needed for speech re-
construction are then obtained from the feature vectors. Exper-
iments are presented in Section 5 that compare the quality and
intelligibility of HMM enhancement with conventional methods
in white and babble noises.

2. Speech enhancement framework
Noisy speech is first decoded by a network of HMMs that is
adapted to the current noise conditions to give a model and state
sequence. Using this sequence, the HMMs then output a set
of clean observation vectors which are input into a model of
speech production to reconstruct enhanced speech. This section
describes the speech production model and feature extraction.

2.1. STRAIGHT vocoder

The STRAIGHT vocoder is used for speech reconstruction
given its success in HMM-based speech synthesis [1, 14], and
requires three input parameters: i) a time-frequency surface,
X(f, i), ii) a fundamental frequency contour, f0i, and iii) a
measure of aperiodicity, A(f, i), where f and i represent fre-
quency bin and frame indices, respectively. The challenge for
HMM speech enhancement is to estimate these parameters ac-
curately to reconstruct good quality speech.

2.2. Feature extraction

The same HMMs are used for decoding and synthesis, so the
speech features must be sufficiently discriminative to provide
accurate decoding and also be able to provide the parame-
ters needed for speech reconstruction. To address both crite-
ria the features are based largely around the requirements for
STRAIGHT. Frames of speech are extracted at 5ms intervals
with a variable duration of 1.2 × T0 for voiced speech, where
T0 is the fundamental period, and a duration of 2.5ms for un-
voiced speech. A 1024-point FFT is applied and the resulting
power spectrum input into a 23-channel mel filterbank followed
by a log and discrete cosine transform (DCT) to produce a 23-
D MFCC vector, xi, with no truncation. From the magnitude
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spectrum the aperiodicity is computed as the ratio between the
energy of inharmonic to harmonic components and gives a mea-
sure of the relative energy distribution of periodic to aperiodic
components. This is input into a 23-channel mel filterbank to
give an aperiodicity vector, ai. An estimate of fundamental fre-
quency, f0i, is computed using PEFAC, which is highly robust
at low SNRs [15]. These form static feature vector, ci, with
three streams,

ci = [xi,ai, log f0i] (1)

For unvoiced frames, log f0i is set to zero.

3. HMM decoding and synthesis
In HMM synthesis a word sequence is used to generate a fea-
ture vector stream [16, 17]. Application to speech enhancement
is different as no word sequence is available and instead the
HMMs must decode the noisy speech into a model and state se-
quence which is input into the HMMs to generate feature vec-
tors, ĉi. These are transformed into the parameters needed for
speech reconstruction.

3.1. HMM training

Static feature vectors, ci, are defined in Eq. 1 and to improve
decoding accuracy, and the smoothness of the synthesised fea-
ture vectors, a velocity derivative, ∆ci, is augmented to give
the feature vector, oi, used for training

oi = [ci,∆ci] (2)

To incorporate velocity derivatives in the HMM synthesis
stage, the set of feature vectors for the entire utterance, O =
[o0,o1, . . . ,oN−1] is computed from the set of static vectors,
C = [c0, c1, . . . , cN−1]

O = WC (3)

where matrix W contains the regression coefficients to trans-
form the static vectors into the augmented vectors [18].

The acoustic units modelled by the set of HMMs, Λ, can
take different forms. In earlier work HMMs were trained on
whole words which limited the vocabulary and prevented un-
constrained speech input [13]. Shorter duration acoustic units
are now considered to allow unconstrained speech input. Mono-
phone HMMs are trained first and then extended to cross-word
triphone HMMs. Decision tree clustering was used to restrict
the number of triphones to 678 triphones [19]. Whole word
models use 16 states, while 5 state HMMs are used for mono-
phone and triphone sub-word models.

3.2. HMM decoding

Estimating a model and state sequence from input noisy speech
uses only the MFCC component, xi of the feature vector,
oi, as including aperiodicity and fundamental frequency re-
duced accuracy. The sequence of noisy MFCC vectors, X =
[x0,x1, . . . ,xN−1], is input into the network of HMMs, Λ,
and using Viterbi decoding a state and model sequence, q̂ =
[q̂0, q̂1, . . . , q̂N−1], is computed

q̂ = argmax
q

p(q|X,Λ, G) (4)

where G is the grammar. For ease of notation, q̂i, provides
the model and state at time i. Depending on the acoustic units
being modelled by the HMMs, a grammar, G, can be applied to
constrain the decoding and is examined in Section 5.

3.3. Noise adaptation

To improve the robustness of the HMMs when decoding noisy
speech, adaptation is applied to adjust the MFCC components
of the clean-trained HMMs to model noisy speech. Specifically
a mismatch function, g(.), transforms clean speech and noise
MFCC vectors, x and d, into a noisy MFCC vector, y,

y = Cyl = Cg(C−1x,C−1d,β) (5)

whereC is a DCT matrix. The mismatch function is defined

g(xl,dl,β) = xl + log

(
1 + expdl−xl

+2β

√
expdl−xl

)
(6)

where the superscript l denotes a log filterbank vector. Vector
β represents a log filterbank-domain phase component that has
been shown to improve adaptation accuracy and is defined in
[20]. An explicit value of β is not known, however following
[20], an estimate is made using a lookup table that is computed
offline during a training stage. For a given x and d, the lookup
table outputs a phase averaged estimate of β that is used in Eq.
6. If the phase component is ignored, i.e. β = [0], the mis-
match function becomes the conventional phase-independent
mismatch function. The mismatch function is applied to the
means and variances of each state of the clean speech trained
HMMs, Λ, to adapt them to model noisy speech. This new set
of HMMs, Λ′ is then used in the decoding of Equation 4. To
obtain the noise statistics needed for adaptation, the method of
unbiased MMSE estimation was used [21].

3.4. HMM synthesis

Using techniques from HMM synthesis [1], given the state and
model sequence, q̂, and clean-trained HMMs, Λ, the most likely
sequence of static feature vectors, Ĉ = [ĉ0, ĉ1, . . . , ĉN−1], is

Ĉ = argmax
C

p(WC|q̂,Λ) (7)

These feature vectors can now be transformed into the parame-
ters needed by STRAIGHT for speech reconstruction.

4. Extraction of STRAIGHT parameters
From the sequence of synthesised static vectors, Ĉ, the time-
frequency surface, X̂(f, i), aperiodicity, Â(f, i), and funda-
mental frequency, f̂0i , needed by STRAIGHT can be extracted.

The time-frequency surface, X̂(f, i), is obtained by first
equalising each MFCC vector in Ĉ, for spectral tilt introduced
in feature extraction, and then applying an inverse DCT and
exponential to give filterbank features [22]. Cubic spline inter-
polation then creates a 513-point spectral representation which
forms the time-frequency surface. Similarly, aperiodicity vec-
tors from Ĉ are inverted to form the aperiodicity, Â(f, i).

Two methods to obtain fundamental frequency, f̂0i , are
considered. The first uses the stream of fundamental frequency
estimates in Ĉ generated by the HMMs. Whilst this is aligned
with the time-frequency surface there is no guarantee that it is an
accurate representation of the original f0 values. For example,
specific intonation introduced by the speaker is not reproduced
in the contour from the HMMs. This leads to the second ap-
proach which estimates fundamental frequency from the noisy
speech using PEFAC [15]. Preliminary tests compared the two
approaches and found the second produced a more accurate f0
contour and a more representative speech signal. Consequently,
PEFAC is used to provide f̂0i in testing.
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5. Experimental results and analysis
Experiments examine speech quality and intelligibility us-
ing different acoustic model and grammar configurations,
first in clean conditions and then noisy conditions, where
noise adaptation is investigated. Experiments use speech
from four speakers in the GRID database (two male and
two female) [23]. Sentences conform to a structure of
command→colour→preposition→letter→digit→adverb. For
each speaker, 800 sentences are used for training and 200 for
testing. Six combinations of acoustic model (whole word,
monophone and triphone) and grammar (word grammar and no
grammar) are considered as shown in Table 1.

Table 1: Acoustic model and grammar configurations.
Method Acoustic model Word grammar
WORD N Word None
WORD G Word GRID
MONO N Monophone None
MONO G Monophone GRID
TRI N Triphone None
TRI G Triphone GRID

Some configurations are inappropriate for practical scenar-
ios due to grammar constraints or using whole-word models
(e.g. WORD G, WORD N, MONO G and TRI G). However,
they provide useful analysis while configurations with no gram-
mar and using sub-word models are able to be deployed practi-
cally (e.g. MONO N and TRI N).

5.1. Tests in clean speech

A first set of tests examined the quality and intelligibility when
clean speech is input into HMM-based enhancement to gauge
baseline performance and is presented in Table 2. The first col-
umn of results (RAW) shows performance when feature vec-
tors, ci, are extracted from clean speech and input directly into
STRAIGHT with no HMMs involved. The quality (PESQ)
score of 3.52, in comparison to 4.50 for the original speech,
shows a reduction in quality arising from the STRAIGHT syn-
thesis which is similar to other studies [24]. Intelligibility, mea-
sured by the normalised covariance metric (NCM [25]), reduces
slightly to 0.98 from 1.00 with original speech.

The remaining columns in Table 2 show, for the combina-
tions in Table 1, decoding accuracy, speech quality and intelli-
gibility when clean speech is input into HMM enhancement and
provide a baseline on performance. Extension F shows results
with forced alignment and consequently decoding accuracy is
100% which gives highest quality and intelligibility. Using a
word grammar ( G) gives very high decoding accuracies across
all three acoustic models. For word models, decoding accuracy
of 99.92% gives quality and intelligibility equal to forced align-
ment. For triphone and monophone models, although decoding
accuracy is still very high (>97%), quality and intelligibility
are lower than with forced alignment. This is due to the timings
of the decoded phoneme sequence being different to that of the
original speech which gives lower objective scores. When no
grammars are used (WORD N, TRI N and MONO N) decod-
ing accuracy reduces but this doesn’t effect the quality and intel-
ligibility. This is an important result which shows that quality
and intelligibility are robust to grammar constraints being re-
moved which is necessary for unconstrained input in practical
scenarios. The remaining analysis considers the performance of
HMM-based speech enhancement in noisy conditions.
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Figure 1: HMM decoding with clean models, matched models
and the noise adaptation in a) white noise and b) babble noise.

5.2. Decoding accuracy

The first test examines how decoding accuracy in noisy con-
ditions can be maximised using the noise adaptation methods
described in Section 3.3. Figures 1a and 1b show decoding
accuracy in white noise and babble noise at SNRs from -5dB
to +10dB using the original clean trained HMMs (CLEAN),
models adapted to noise (ADAPT) and models trained under
matched noise conditions (MATCH) which provide an indica-
tion of the upper bound on accuracy. For all tests, triphone
HMMs are used with no word grammar, i.e. TRI N. Decoding
accuracy using the clean models deteriorates rapidly as SNRs
reduce. However, applying noise adaptation improves accuracy
substantially with performance close, and in some cases exceed-
ing, matched condition models. In all subsequent tests noise
adaptation is applied to the clean models.

A second set of tests is now performed to examine the ef-
fect that the model and grammar combinations of Table 1 have
on decoding accuracy. Figures 2a and 2b show decoding ac-
curacy in white and babble noise at SNRs from -5dB to 10dB
for the different model and grammar configurations (WORD N
had similar performance to WORD G and is removed for clar-
ity). The WORD G and TRI G methods have highest decod-
ing accuracy as they both use a word grammar. Removing the
grammar from the triphone system (TRI N) reduces decoding
accuracy but has the important advantage of now being able
to decode unconstrained speech input which is necessary in a
practical enhancement scenario. The two monophone configu-
rations perform worst.

5.3. Speech quality

Figures 2c and 2d show PESQ scores for HMM enhancement
where word-level HMMs (WORD G) and triphones (TRI G
and TRI N) attain highest quality. This is due to their high
decoding accuracy and the good synthesis quality when using
whole-word or triphone models. For the triphone system, re-
moving the grammar constraint (and consequently allowing a
practical implementation) has almost no effect on quality even
though it had a larger difference in decoding accuracy. This
is attributed to the decoding error metric reporting an error ir-
respective of how acoustically similar the incorrectly chosen
model is to the correct model. In many instances the erroneous
model is still acoustically similar and so has much less effect
on the resulting speech quality than the decoding error rate may
suggest. This is particularly true with the large number of tri-
phone models for each phoneme. The two monophone-based
systems perform worst and this is expected due to their lower
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Table 2: Decoding accuracy, speech quality (PESQ) and intelligibility (NCM) for clean speech input into HMM-based enhancement
using different acoustic models and grammar constraints, and for direct synthesis (RAW).

RAW WORD F WORD G WORD N TRI F TRI G TRI N MONO F MONO G MONO N

Acc. % - 100 99.92 98.58 100 99.79 98.83 100 97.78 74.90
PESQ 3.52 2.63 2.63 2.63 2.74 2.44 2.44 2.41 2.20 2.22
NCM 0.98 0.77 0.77 0.77 0.80 0.73 0.73 0.70 0.65 0.64
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Figure 2: HMM enhancement in white noise (left column) and
babble noise (right column) showing: a) & b) decoding accu-
racy, c) & d) speech quality (PESQ), e) & f) speech intelligibil-
ity (NCM).

decoding accuracy and the lack of context in synthesis. Also
shown for comparison are results for the log MMSE and spec-
tral subtraction methods of enhancement [2, 4], which perform
better at higher SNRs but fall below the PESQ scores of the
HMM-based enhancement at lower SNRs.

To investigate further the characteristics of the enhanced
speech the source-to-interference ratio (SIR) and source-to-
distortion ratio (SDR) are shown in Figures 3a and 3b for
white and babble noises, and compared with log MMSE [26].
The SIR shows HMM enhancement to be more effective at
removing interfering noise than log MMSE and is attributed
to the HMMs/STRAIGHT reconstructing noise-free speech.
Conversely, the SDR is lower compared to log MMSE and
is attributed to the more artificial speech quality produced by
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Figure 3: a) SIR and b) SDR of HMM enhanced speech and log
MMSE in white and babble noises at SNRs from -5dB to 10dB.

STRAIGHT. Listening to the speech confirms these results.

5.4. Speech intelligibility

Figures 2e and 2f show speech intelligibility (NCM). Triphone
models (TRI N and TRI G) and word models (WORD G) at-
tain highest intelligibility which remains very stable even at low
SNRs. The slight reduction at -5dB is attributed to the reduc-
tion in decoding accuracy that is observed in these high levels
of noise. Intelligibility of the conventional methods falls more
rapidly and at SNRs of 0dB and below the HMM enhancement
achieves higher intelligibility.

6. Conclusions

This work has presented a method of speech enhancement that
uses HMMs to first decode input noisy speech and then synthe-
sise parameters to reconstruct clean speech. Analysis has shown
that triphone-based systems maintain performance without the
need for a word grammar which enables a practical system for
enhancing unconstrained speech. Furthermore, quality and in-
telligibility are found to not be too sensitive to decoding errors
as often a similarly sounding acoustic model is selected. To
bring decoding accuracy in noise to a level capable of provid-
ing good synthesis of parameters, noise adaptation was found
to be as effective as matched training which again enables a
practical deployment. In comparison to log MMSE, the HMM
enhanced speech was in general found to be free from back-
ground noise but more distorted. HMM enhancement was found
to have higher quality and intelligibility at low SNRs, and re-
mains more stable as SNRs reduce. However, tests at higher
SNRs and in clean conditions show that quality and intelligibil-
ity are restricted, compared to the original speech, which puts
an upper limit on performance. Further work is concentrated on
improving synthesis quality in clean conditions which should
improve quality in noise.
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