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Abstract

The performance of automatic speech recognition can of-

ten be significantly improved by combining multiple systems

together. Though beneficial, ensemble methods can be com-

putationally expensive, often requiring multiple decoding runs.

An alternative approach, appropriate for deep learning schemes,

is to adopt student-teacher training. Here, a student model is

trained to reproduce the outputs of a teacher model, or ensemble

of teachers. The standard approach is to train the student model

on the frame posterior outputs of the teacher. This paper exam-

ines the interaction between student-teacher training schemes

and sequence training criteria, which have been shown to yield

significant performance gains over frame-level criteria. There

are several possible options for integrating sequence training,

including training of the ensemble and further training of the

student. This paper also proposes an extension to the student-

teacher framework, where the student is trained to emulate the

hypothesis posterior distribution of the teacher, or ensemble of

teachers. This sequence student-teacher training approach al-

lows the benefit of student-teacher training to be directly com-

bined with sequence training schemes. These approaches are

evaluated on two speech recognition tasks: a Wall Street Jour-

nal based task and a low-resource Tok Pisin conversational tele-

phone speech task from the IARPA Babel programme.

Index Terms: speech recognition, student-teacher training, se-

quence training, combination, ensemble methods

1. Introduction

Ensemble combinations have often been found to outperform

single systems in Automatic Speech Recognition (ASR) [1–4].

The performance gains are attributed to the possibility of cor-

recting errors that occur in each system [1], reducing the like-

lihood of selecting a poor model, and increasing the space of

possible models [5]. Ensemble methods are expected to be es-

pecially helpful when the quantity of training data is limited [5].

However, if implemented as a hypothesis-level combination,

such as ROVER [1] and confusion network combination [2], the

computational demand of decoding through the ensemble scales

linearly with the number of systems. To address this problem

in regression tasks, [6] proposes the idea of training a single

student model to emulate the function learned by a teacher en-

semble. This approach will be referred to as student-teacher

training.

Applying student-teacher training to ASR tasks, [7] uses

the KL-divergence between the student and teacher ensemble

frame posteriors as the training criterion, with the introduction

of a temperature to soften the distribution. Raising the tempera-

ture enhances the likelihoods of competing classes and eases the

learning of the teacher posteriors. It is shown in [7] that training

the student to emulate the frame posteriors of a teacher ensem-

ble can give performance gains over standard Cross-Entropy

(CE) training on the forced alignment hard targets. Frame-level

student-teacher training can also be used as a form of pretrain-

ing, before fine-tuning with the standard CE criterion, and has

been shown to lead to improved generalisation [8]. A related

idea to student-teacher training jointly trains an ensemble with

a diversity penalising term in the criterion, encouraging each

system to converge toward the function of the ensemble [9].

Current student-teacher training methods in ASR have so

far only trained a student to emulate the teacher’s frame poste-

riors, and the teachers themselves have only been trained using

the CE criterion [7, 8, 10, 11]. Sequence training methods [12]

have been shown to produce significant gains over CE for single

systems [13, 14].

This paper investigates incorporating sequence training into

ensemble and student-teacher methods. Firstly, by building

upon the work in [3] that investigates frame-level combinations

of CE-trained ensembles, the experiments in this paper will in-

vestigate whether frame-level combination methods are able to

benefit from sequence training of the ensemble. Then, an incor-

poration of sequence training into student-teacher training shall

be assessed by first training a student to emulate the frame pos-

teriors of a sequence-trained teacher ensemble, and then further

refining the student with standard sequence training. Finally,

hypothesis-level student-teacher training will be proposed, to

train the student to directly emulate the hypothesis posteriors of

the teacher ensemble.

2. Ensemble Student-Teacher Training

To achieve large combination gains, the systems in the ensemble

need to be both diverse and individually accurate [5]. Some of

the common methods to introduce diversity within the ensemble

are to use different random weight initialisations, bagging [15],

and random decision trees [16]. The ensemble can then be ex-

plicitly trained to encourage diversity, using methods such as

Adaboost [17] and negative correlation learning [18].

In this paper, the teacher ensemble is made diverse solely

by using a different random seed for the Deep Neural Network

(DNN) weight initialisation of each teacher, without any ex-

plicit diversity encouragement during training. Using additional

diversity methods can be expected to improve the ensemble per-

formance. However, using just the simple technique of different

random DNN weight initialisations should provide sufficient di-

versity to demonstrate the student-teacher training methods in

this paper, particularly when working with limited quantities of

training data.

Each teacher in the ensemble is first pretrained with layer-

wise discriminative pretraining, and then fine-tuned with the CE
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criterion,

FCE = −
∑

r

∑

t

logP (s∗rt|ort,Φm) , (1)

where s∗rt are the state-level forced alignment hard targets, ort

are the observations, r is the utterance index, t is the time step,

Φm are the teacher models, and m is the model index. The

teachers can then be sequence-trained with either the Maximum

Mutual Information (MMI) criterion,

FMMI = −
∑

r

logP (h∗

r |Or,Φm) (2)

or the Minimum Bayes’ Risk (MBR) criterion,

FMBR =
∑

r

∑

hr

L (hr, h
∗

r)P (hr|Or,Φm) , (3)

where hr are the sentence hypotheses, h∗

r are the manual tran-

scriptions, and L is a loss function that is taken to be the

state-level minimum edit distance in this paper. Training with

the state-level loss function is known as the state-level MBR

(sMBR) criterion [19, 20].

An important aspect of ensemble methods is to establish a

baseline. Having trained the teacher models, the ensembles in

this paper can then be combined either at the frame or hypothe-

sis level. At the frame level, the combination used is a weighted

linear average of the frame posteriors,

P (srt|ort,Φ) =

M
∑

m=1

αmP (srt|ort,Φm) , (4)

where srt are the DNN output classes, M is the ensemble size,

and αm are the teacher ensemble mixture weights, such that
∑

m
αm = 1 and αm ≥ 0. This is similar to using a linear en-

semble with diagonal matrices in [3]. These combined frame

posteriors are then passed up to the Hidden Markov Model

(HMM) as observation likelihoods, and used with standard de-

coding. At the hypothesis level, the ensemble is decoded using

MBR combination decoding [4],

h
∗

r = argmin
h′

r

∑

hr

L
(

hr, h
′

r

)

M
∑

m=1

βmP (hr|Or,Φm) , (5)

where here the loss function, L, is the word-level minimum edit

distance and βm are the teacher ensemble mixture weights, such

that
∑

m
βm = 1 and βm ≥ 0. This can be realised by first nor-

malising the lattices generated by each teacher, then taking their

union, and finally performing MBR decoding on the merged

lattice. These combination methods are chosen, because they

produce valid posterior distributions that the student model can

be trained to emulate, and because they are related to the target

posterior distributions in the student-teacher training methods

described in sections 2.1 and 2.2.

Decoding through a frame-level combination requires one

forward pass through each DNN within the ensemble. In ad-

dition to this, decoding through a hypothesis-level combination

also requires generating and processing one decoding lattice for

each system within the ensemble, and is therefore more compu-

tationally expensive. Decoding through a single student model

greatly reduces this computational demand.

The student model used in this paper has the same architec-

ture as one teacher within the ensemble. However, it is possible

to use a student model that has a different complexity than the

teachers [10], or is even of a different model type [8, 11].

2.1. Frame-level student-teacher training

Having obtained a teacher ensemble, a single student model can

then be trained to emulate its attributes. The existing meth-

ods for student-teacher training aim at emulating the frame-

level posteriors, by for example, minimising a weighted av-

erage of the standard CE criterion with hard targets and the

KL-divergence between the student and teacher frame poste-

riors [7, 8, 11],

CCE =−
∑

r

∑

t

∑

srt

P
∗

CE (srt) logP (srt|ort,Θ) , (6)

where Θ are the student model parameters. The target frame

posteriors are

P
∗

CE (srt) = (1− λ) δ (srt, s
∗

rt)+λ

M
∑

m=1

αmP (srt|ort,Φm) .

(7)

The variable λ is the frame-level ensemble target weight, which

sets the relative contribution of the teacher posteriors and the

hard targets. This is the distribution that the student will tend

toward given a sufficiently powerful model and enough train-

ing data. Therefore, in addition to the hard targets, the student

model has the opportunity to learn attributes of the teacher en-

semble frame posteriors. Setting λ = 0 leads to the standard

CE criterion.

2.2. Hypothesis-level student-teacher training

Just as sequence training has been shown to provide perfor-

mance gains over CE training for a single system [13], it is also

reasonable to expect better performance from student-teacher

training at the hypothesis level than the frame level. This paper

therefore proposes a new student-teacher training criterion, to

minimise a weighted average of the MMI criterion and the KL-

divergence between the student and teacher hypothesis posteri-

ors,

CMMI =−
∑

r

∑

hr

P
∗

MMI (hr) logP (hr|Or,Θ) . (8)

The target hypothesis posteriors are

P
∗

MMI (hr) = (1− η) δ (hr, h
∗

r) + η

M
∑

m=1

βmP (hr|Or,Φm) .

(9)

The relative contribution between the teacher posteriors and the

manual transcriptions is adjusted using the hypothesis-level en-

semble target weight, η. This is again the distribution that the

student will tend toward given a sufficiently powerful model and

enough training data. Setting η = 0 leads to the standard MMI

criterion. This proposed hypothesis-level student-teacher crite-

rion is related to MMI, and sMBR variants may also be used,

but are not investigated here.

The dynamic range of the posterior distribution has been

shown to be an important aspect for sequence training [21]. To

adjust the dynamic range in the hybrid ASR architecture, the hy-

pothesis posteriors may be factorised into language and acoustic

models,

P (hr|Or,Φm) =
Pκ (hr) p

γ (Or|hr,Φm)
∑

h′

r

Pκ (h′
r) pγ (Or|h′

r,Φm)
, (10)
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where κ and γ are the language and acoustic scaling factors

respectively. These scaling factors can be used to alter the dy-

namic range of the distributions, and play a similar role to the

temperature in [7].

The derivative of the criterion in Equation (8) with respect

to the pre-softmax activations, asrt , is

∂CMMI

∂asrt

= γ
∑

hr

[

P (hr|Or,Θ)

− P
∗

MMI (hr)
]

P (srt|hr,Or,Θ) (11)

= γ

[

P (srt|Or,Θ)− (1− η)P (srt|h
∗

r ,Or,Θ)

−η
∑

hr

M
∑

m=1

βmP (hr|Or,Φm)P (srt|hr,Or,Θ)

]

.

(12)

As expected, Equation (11) shows that the derivative is zero

when the student hypothesis posteriors are equal to the target

hypothesis posteriors. To retain computational tractability, the

sum needs to be limited to only over the hypotheses present

in a pruned lattice. Unigram lattices are used for training, as

a weaker language model allows deficiencies in the student’s

acoustic model to be more apparent and thus more effectively

corrected [22]. Preliminary tests have also shown better per-

formance when using unigram, rather than trigram, teacher lat-

tices. An issue with using pruned lattices is that for any hy-

pothesis that exists within the teacher but not the student lattice,

P (srt|hr,Or,Θ) = 0 for all srt, which is not a valid distri-

bution, as it does not sum to one. To address this, the approxi-

mation is taken in this paper that

P (srt|hr,Or,Θ) ≈ P (srt|hr,Or,Φ) , (13)

when hr is not contained within the pruned student lattice. The

combined lattice of the teacher ensemble is used to compute

P (srt|hr,Or,Φ). This approximation does however present

a mismatch between the student model and the gradient. The

degree of mismatch is dependent on the probability mass al-

located to the hypotheses that are disjoint between the teacher

and student lattices. This can be minimised by using wider lat-

tices. Alternatively, this issue of missing hypotheses within the

pruned student lattice can be addressed by acoustically rescor-

ing a union of the student and teacher lattices with the student

observation likelihoods. This method will require further inves-

tigation.

In the current implementation of Equation (12),

P (srt|Or,Θ) and P (srt|h
∗

r ,Or,Θ) are computed

through standard forward-backward passes over the lat-

tices, while
∑

hr

∑

m
βmP (hr|Or,Φm)P (srt|hr,Or,Θ)

is computed using n-best lists. Using large n-best lists can

include all hypotheses within the pruned lattices into the

sum, but maintaining a finite list size safeguards against

long computation times. There may be more efficient meth-

ods of computing the gradient, which will require further

investigation. If the student lattice is determinised and not

regenerated, then it is possible to pre-compute and store
∑

hr

∑

m
βmP (hr|Or,Φm)P (srt|hr,Or,Θ), thereby

avoiding having to re-compute it at every training iteration.

The memory requirement to store this pre-computed term is

the same as that needed to store the teacher frame posteriors in

frame-level student-teacher training.

3. Experiments

All experiments are realised using the Kaldi speech recogni-

tion toolkit [23], and operate on the Babel Tok Pisin (IARPA-

babel207b-v1.0e) [24] and WSJ [25] datasets. The Tok Pisin

Very Limited Language Pack (VLLP) is used, comprising ap-

proximately 3 hours of conversational telephone speech. This

dataset contains a fairly limited quantity of training data, and

should therefore benefit much from system combination. A

graphemic lexicon [26] is used. The standard 10 hour devel-

opment set is used for decoding with a trigram language model

trained on the VLLP manual transcriptions. For WSJ, the 14

hour si-84 training set is used, and the 64K words open vocabu-

lary eval92 test set is used for decoding, with the Kaldi big dic-

tionary trigram language model, which adds additional words

within the training data to the standard language models. Ex-

perimenting on these two datasets will allow an investigation of

student-teacher training over different performance ranges.

Frame alignment hard targets are obtained from a Gaus-

sian Mixture Model (GMM)-HMM. The WSJ GMM-HMM is

trained following the Kaldi s5 recipe, up to tri4b. For Tok

Pisin, the GMM alignments are used to train a DNN with CE,

which is then used to refine the alignments. Initial tests show

that realigning with the DNN is important for Tok Pisin, due

to the poor quality of the GMM model. The Tok Pisin feature

vectors consist of 107-dimensional tandem features [27]. The

WSJ DNN uses 40-dimensional filter-bank features, appended

with first and second order temporal derivatives, and a 15 frame

splice context. After state clustering, the Tok Pisin and WSJ

DNN outputs have 949 and 3444 targets respectively. The DNN

architecture used for Tok Pisin has 4 layers with 1000 nodes

per layer, while that for WSJ has 6 layers with 2000 nodes per

layer. All DNNs are first initialised with layerwise discrimina-

tive pretraining, and then fine-tuned with the CE or frame-level

student-teacher criterion. Sequence training is then performed,

without lattice regeneration. All evaluation is done using MBR

decoding, with language scaling factors of 10 for Tok Pisin and

14 for WSJ.

3.1. Ensemble training criteria and combinations

In this first experiment on Tok Pisin, an ensemble of 10 teachers

are trained up to different criteria, and combined at either the

frame or hypothesis level, following equations (4) and (5) re-

spectively. Both combinations use equally weighted averages,

with αm = 1

M
and βm = 1

M
for all m. The results in Table

1 show that even with layerwise discriminative pretraining, ini-

tialising each DNN with a different random seed is still able to

provide significant combination gains. As expected, sequence

training improves the performance of individual teachers. These

single system performance gains also result in improvements to

the combined performance with both combination methods.

Table 1: WER (%) of ensemble combinations of 10 teachers

trained with various criteria for Tok Pisin

Ensemble Single system WER (%) Frame Hypothesis

criterion mean best worst std dev combine combine

CE 51.4 51.3 51.5 0.1 50.8 50.5

MMI 49.3 49.1 49.4 0.1 48.7 48.4

sMBR 48.2 48.1 48.4 0.1 47.3 47.0

For WSJ, an ensemble of 4 sMBR-trained teachers is used,

with a mean single system WER of 5.09 %. Frame-level com-
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bination of the WSJ ensemble gives a WER of 4.89 %, while

hypothesis-level combination gives 4.84 %.

The results show that greater gains can be achieved by com-

bining at the hypothesis level, rather than the frame level. The

reason for this may be that hypothesis combination leads di-

rectly to more accurate hypothesis posteriors, while frame com-

bination may not. Decoding depends directly on the hypothesis

posteriors. The hypothesis-combined ensemble is therefore a

better performing teacher ensemble to training the student on.

However, it is more computationally expensive to decode a hy-

pothesis combination than a frame combination.

3.2. Frame-level student-teacher training

This experiment examines student models trained through

frame-level student-teacher training to emulate the frame pos-

teriors of teacher ensembles trained with different criteria, and

with various frame-level target weights, λ. Figure 1 shows that

the gains obtained by the teacher ensembles through sequence

training do transfer over to the students, improving their perfor-

mance. It is interesting that as the performance of the teacher

ensemble improves, the optimal λ increases. This is expected,

as the system is “backing-off” to a CE criterion as λ decreases.
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Figure 1: WER (%) of frame-level students trained with various

frame-level teacher ensembles and target weights for Tok Pisin

Comparing the results in Table 1 and Figure 1, it can be seen

that although the students have only been trained at the frame

level, their λ = 1 WERs of 49.1 % and 47.7 %, with MMI and

sMBR-trained teacher ensembles respectively, are able to out-

perform standard MMI and sMBR-trained models with mean

WERs of 49.3 % and 48.2 %. However, all of the students in

Figure 1 are still unable to match the performance of their re-

spective teacher ensemble frame-level combinations in Table 1.

Table 2: WER (%) of sequence training on λ = 1 frame-level

students initialised with frame-level sMBR teacher ensembles

Student-teacher training Tok Pisin WSJ

frame level 47.7 5.07

frame level + MMI 47.6 5.09

frame level + sMBR 47.2 4.94

sMBR ensemble frame combination 47.3 4.89

sMBR ensemble hypothesis combination 47.0 4.84

Although the teacher ensembles may have been sequence-

trained, the students have only been trained to emulate the

teachers at the frame level. To address this shortcoming, se-

quence training is used to refine student models that are ini-

tially trained with frame-level student-teacher training using the

sMBR teacher ensembles and λ = 1. The results in Table 2

show that sequence training on the frame-level student models

can provide additional gains. Training the frame-level students

with the MMI criterion does not yield any significant gains,

as the initial students have already been trained toward sMBR

teacher ensembles, and the sMBR criterion has been shown to

perform better than the MMI criterion. Further sMBR train-

ing of the frame-level students does result in improved perfor-

mance, and for Tok Pisin, brings the WER to match that of the

teacher ensemble frame-level combination. This suggests that

the full gains of sequence training have not been carried through

to the student models in frame-level student-teacher training.

3.3. Hypothesis-level student-teacher training

Table 3: WER (%) of hypothesis-level student-teacher training

with the hypothesis-level sMBR teacher ensembles

Student-teacher training η Tok Pisin WSJ

frame level - 47.7 5.07

frame level + MMI 0.0 47.6 5.09

hypothesis level 0.5 47.0 4.91

hypothesis level 1.0 47.4 4.94

This final experiment compares training using the pro-

posed MMI-based hypothesis-level student-teacher criterion

with frame-level student-teacher training. Before sequence

training, the student models are initialised using the same

frame-level student-teacher training as in the previous experi-

ment. The results in Table 3 show that for both η = 0.5 and

1.0, hypothesis-level student-teacher training is able to outper-

form frame-level student-teacher training on both datasets. The

proposed hypothesis-level student-teacher training even outper-

forms MMI training of the frame-level student models. As

with the frame level, the learned hypothesis posteriors of the

teacher ensembles do aid in training the students. The proposed

hypothesis-level student-teacher training is able to match the

performance of sMBR training of the frame-level students in

Table 2. For Tok Pisin, the η = 0.5 student model is able to

match the WER of the teacher ensemble hypothesis-level com-

bination of 47.0 %. However, it may still be possible to obtain

further improvements using a hypothesis-level student-teacher

criterion that is based on sMBR, rather than MMI.

4. Conclusion

This paper has investigated the interactions between student-

teacher training and sequence training, and has presented a

novel student-teacher training method to emulate the hypothesis

posteriors, improving upon previous methods of only emulating

the frame posteriors. This training method allows the teacher

ensemble to be constructed through hypothesis-level combina-

tion, which has been shown to perform better than frame-level

combination. The experiments demonstrate that the gains from

sequence training of the teacher ensemble can be emulated by

the frame-level student. Further sequence training of the frame-

level student can bring additional gains. Training the student

to match the teacher posteriors at the hypothesis level has been

shown to perform better than at the frame level, even with fur-

ther MMI training of the frame-level student.

The future work will investigate methods to incorporate the

sMBR criterion into student-teacher training.

2764



5. References

[1] J. G. Fiscus, “A post-processing system to yield reduced word
error rates: recogniser output voting error reduction (ROVER),”
in ASRU, Santa Barbara, USA, Dec 1997, pp. 347–354.

[2] G. Evermann and P. C. Woodland, “Posterior probability decod-
ing, confidence estimation and system combination,” in Speech

Transcription Workshop, vol. 27, 2000.

[3] L. Deng and J. C. Platt, “Ensemble deep learning for speech
recognition,” in INTERSPEECH, Singapore, Sep 2014, pp. 1915–
1919.

[4] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum Bayes risk
decoding and system combination based on a recursion for edit
distance,” Computer Speech and Language, vol. 25, no. 4, pp.
802–828, Oct 2011.

[5] T. G. Dietterich, “Ensemble methods in machine learning,” in
Multiple Classifier Systems, Cagliari, Italy, Jun 2000, pp. 1–15.
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