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Abstract

Voice onset time (VOT) is defined as the time difference be-
tween the onset of the burst and the onset of voicing. When
voicing begins preceding the burst, the stop is called prevoiced,
and the VOT is negative. When voicing begins following the
burst the VOT is positive. While most of the work on automatic
measurement of VOT has focused on positive VOT mostly ev-
ident in American English, in many languages the VOT can be
negative. We propose an algorithm that estimates if the stop
is prevoiced, and measures either positive or negative VOT, re-
spectively. More specifically, the input to the algorithm is a
speech segment of an arbitrary length containing a single stop
consonant, and the output is the time of the burst onset, the du-
ration of the burst, and the time of the prevoicing onset with a
confidence. Manually labeled data is used to train a recurrent
neural network that can model the dynamic temporal behavior
of the input signal, and outputs the events’ onset and duration.
Results suggest that the proposed algorithm is superior to the
current state-of-the-art both in terms of the VOT measurement
and in terms of prevoicing detection.
Index Terms: voice onset time, prevoicing, recurrent neural
networks

1. Introduction
Voice onset time (VOT), the time between the onset of a stop
burst and the onset of voicing, is an important cue to stop voic-
ing and place. It is widely measured in theoretical and clinical
settings, for example to characterize how communication disor-
ders affect speech [1] or how languages differ in the phonetic
cues to stop contrasts [2, 3]; it is also increasingly used as a
feature for automatic speech recognition (ASR) tasks such as
stop consonant classification [4, 5, 6]. Automatic VOT mea-
surement would be very beneficial for clinical and theoretical
studies, where it is currently usually measured manually, and is
essential for ASR applications.

Several recent studies have proposed VOT measurement al-
gorithms [5, 6, 7, 8, 9, 10],1 all making the assumption that
VOT is always positive (burst onset precedes voicing onset).
However, this assumption is well known to be false. VOT can
in general also be negative (voicing onset precedes burst on-
set), in which case the stop is “prevoiced.” In English, for ex-
ample, voiceless stops (/p/, /t/, /k/) always have positive VOT,
while voiced stops (/b/, /d/, /g/) can have positive or negative
VOT [11]. In other languages (e.g., Dutch, French, Spanish),

1This list is not exhaustive, due to space considerations.

voiced stops usually have negative VOT, while voiceless stops
have positive VOT [12, 11].

We are aware of only a single work [13] that handles both
positive and negative VOTs by extending [8]. In that work two
parallel classifiers were jointly trained: one for measuring pos-
itive VOTs and one for measuring negative VOTs. The clas-
sifiers operated on two sets of customized features based on
spectro-temporal cues to the location of the burst and voicing
onsets in the positive and negative VOT cases.

Current algorithms that focus on positive VOT solve two
challenges in VOT measurement: detection of the onset of the
burst and the onset of the voicing of the vowel. We extend
these algorithms by addressing two additional challenges: de-
termining whether or not prevoicing is present, and, when it is
present, the onset of prevoicing. To simultaneously address all
four challenges, we develop an algorithm that identifies up to
four regions in each input utterance:

1. Silence: From utterance onset to prevoicing onset

2. Prevoicing: From prevoicing onset to burst onset

3. Burst/Aspiration: From burst onset to onset of voicing
of vowel

4. Vowel: From onset of vowel voicing to end of utterance

We train a multiclass recurrent neural network to classify
each frame of the input utterance as part of each region. We
then use a dynamic programming algorithm to find the best seg-
mentation of the utterance based on the classifier predictions,
yielding the desired time points for calculating VOT.

Below, we outline our approach. We then assess its perfor-
mance, first in the well-studied problem of positive VOT mea-
surement and then in the less well studied case of measurement
of prevoicing. We show that our algorithm out performs state-
of-the-art alternatives in both cases, suggesting that it can pro-
vide a solution to the general problem of VOT measurement.

2. Problem definition
The input to our algorithm is a speech utterance containing a
single stop consonant, and the output is the voice onset time
(VOT), that is, the time difference between the onset of the burst
and the onset of voicing. When voicing begins preceding the
burst, the output is the time difference between the onset of the
prevoicing and the onset of the burst. The input utterance can
be of an arbitrary length, and its beginning need not be syn-
chronized with the prevoicing (if exists), the burst onset, the
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Figure 1: Annotation example for prevoicing, burst and voicing
onsets. The spoken word in this wav form is “dug.”

voicing onset, or the closure. It is required that the input utter-
ance includes the burst, part of the vowel and the whole region
of prevoicing (if exists).

Let x̄ = (x1, . . . ,xT ) denotes the input speech utterance,
represented as a sequence of acoustic feature vectors, where
each xt ∈ RD (1 ≤ t ≤ T ) is a D-dimensional vector. The
length of the speech utterance, T , is not a fixed value since the
input utterances can have different durations.

Each input utterance is associated with three elements: the
prevoicing onset, tpv ∈ T , the onset of the burst, tb ∈ T , and
the onset of the voicing of the vowel, tv ∈ T , where T =
{1, . . . , T}, and tpv < tb < tv . In the case of positive lag
stops the prevoicing onset does not exist and tpv is assigned to
be −1, and the VOT is tv − tb, whereas in the case of negative
lag (prevoiced) stops, all the three elements are defined and the
VOT is tb − tpv . Our notation is depicted in Figure 1.

3. Learning apparatus

3.1. Features

Seven (D=7) acoustic features are extracted from the speech
signal every 1 ms [8]. The first five features refer to an STFT
taken with a 5 ms Hamming window: the total spectral energy
(Etotal), energy between 50–1000Hz (Elow), energy above 3000
Hz (Ehigh), Wiener entropy (Hwiener), and the number of zero
crossings of the signal (ZC). Features 6–7 are the maximum of
the FFT of the autocorrelation function of the signal from 6 ms
before to 18 ms after the frame center (Rl), and a binary voicing
detector based on the RAPT pitch tracker [14], smoothed with
a 5 ms Hamming window (V ).

In addition, we also use the cumulative mean, differences
and max of these features similar to the feature functions used
in [8] as another input to the classifier. These feature maps were
chosen by empirical examination of the spectra and waveform
of voiced stops with and without prevoicing. Overall we have
63 features per frame.

3.2. Recurrent neural network

One approach to determining the duration of a phonetic prop-
erty is to predict at each time frame whether the property is
present or absent; the predicted duration is then the smoothed,
continuous set of frames where the property is likely to be
present [15]. In this work we extend this method, generating
predictions using a Recurrent Neural Network (RNN). This al-
lows the prediction of whether a property is present to be sensi-
tive to the relationship between frames.

We implement a network of two-layers of stacked LSTMs
[16], which has shown considerable success in analyzing dy-
namic temporal behavior [17, 18]. We use an in-house imple-
mentation that is based on the Torch7 toolkit [19, 20]. Formally,
the implementation is the following set of recursive equations,
where the weights and the biases are denoted by W and b, re-
spectively, and σ is the sigmoid function:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2)
ct = ft � ct−1

+ it � tanh(Wxcxt + Whcht−1 + bc) (3)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (4)
ht = ot � tanh(ct) (5)

The input to the RNN classifier is a sequence of T tuples,
where each tuple is composed of the acoustic features xt and
a corresponding label yt from the set Y ={silence, prevoicing,
burst, vowel} for 1 ≤ t ≤ T as follows:

yt =


silence 1 ≤ t < tpv

prevoicing tpv ≤ t < tb

burst tb ≤ t < tv

vowel tv ≤ t ≤ T

. (6)

We trained a multiclass RNN to predict the label of each frame,
and optimized the negative log-likelihood using Adagrad [21]
with learning rate of 0.1 and batch size of 32 examples. We
used two dropout layers after each LSTM with dropout rate of
0.8. We stoped training the network after 5 epochs with no loss
improvement on the validation set.

3.3. Inference

The Multiclass RNN outputs a probability for each class. At
inference time, we use these probabilities to predict the most
likely segmentation of the utterance. Since the predictions can
be noisy, and we require a smooth prediction, we use a dynamic
programming algorithm to infer the best segmentation. This
procedure is described in Figure 2. Denote by P̂ (yt|xt) the
predicted probability of the network for the input xt and class
yt, and denote by Tm the maximum allowable size of each seg-
ment. Given y = Y be the events in the utterance, and two time
indices t, t′ ∈ T , denote by D(y, t, t′) the score for the prefix
of the events sequence: silence,. . . , y, assuming that their ac-
tual onsets are 1, tpv, . . . , t

′, and assuming that yi+1 = t. The
best sequence of actual onsets is obtained from the algorithm by
saving the intermediate values that maximize each expression in
the recursion step.

4. Experiments
In order to have better understanding on the capabilities of the
proposed model we divide the analyses into two sections. First,
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Initialization:
for y =[silence]

Dneg(y, t, 0) = P̂ (y|xt) 1 ≤ t ≤ Tm

Dpos(y, t, 0) = P̂ (y|xt) 1 ≤ t ≤ Tm

Recursion:
for y =[prevoicing, burst, vowel]

Dneg(y, t′, t′′) = max
t′′′

t′∑
t=t′′

P̂ (y|xt) +Dneg(y−1, t′′′, t′′)

for y =[burst, vowel]

Dpos(y, t
′, t′′) = max

t′′′

t′∑
t=t′′

P̂ (y|xt) +Dpos(y−1, t′′′, t′′)

Termination: for y =[vowel]

D? = max
t′

{
Dneg(y, T, t′), Dpos(y, T, t

′)
}

Figure 2: Dynamic programming algorithm for post-process in-
ference.

we trained the network to measure only positive VOT and com-
pared it to the current state of the art algorithm. We then trained
the network to measure positive and negative VOT jointly and
compared it to the current state of the art algorithm.

4.1. Positive VOT

To evaluate the performance of our model in measuring positive
VOT we used data from 9 speakers drawn from the Northwest-
ern University community [22]. Participants read aloud tongue
twisters consisting of alternating pairs of voiced and voiceless
consonants (e.g., pin bin bin pin). Recordings were randomly
assigned to two highly trained coders. VOT was coded via in-
spection of the waveform, from burst to onset of periodicity in
the vowel. Reliability (n = 257 tokens from 5 participants) was
very high (r = 0.996).

We trained the network on data from 4 speakers (7,654
acoustic segments), with 15% from the data for validation, and
tested on data from the remaining 5 speakers (8,628 acoustic
segments). Overall we used 504,790 frames for training, 89,080
frames for validation and 143,458 frames for test. The dataset is
roughly balanced with respect to the number of VOT and none-
VOT frames. We denote our system as DeepVOT. The same
dataset with the same data split was used to train the algorithm
in [8], denoted AutoVOT. Table 1 summarizes the distribution
of automatic/manual differences over the test set.

Results suggests that our algorithm is superior to the Au-
toVOT algorithm; DeepVOT exhibits smaller deviations from
manual measurements. This is a non-trivial improvement, espe-
cially when the tolerance value, t, is small, i.e. 2 or 5 msec.

To see if the system suffers a decline in results when using
a model that was trained on one dataset but tested on a different
one, we evaluated this trained DeepVOT system on a new data
set. We examined positive-lag VOTs from 16 native English
speakers at Purdue University who read aloud a list of printed
words three times. Recordings were randomly assigned to four
trained coders. The VOT intervals were coded via inspection of
the waveform and the spectrogram of word- initial stops. Posi-
tive VOT was measured from the onset of burst until the onset

Table 1: Proportion of differences between automatic and man-
ual measures falling at or below a given tolerance value (in
msec). For example, for DeepVOT, in 75.3% of examples in the
test set the difference between automatic and manual measure-
ments was 2 msec or less.

Model t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

AutoVOT
mean 50.5 79.1 91.7 94.4 96.8 98.8

std 4.5 4.7 2.6 1.9 1.2 0.6

DeepVOT
mean 75.3 91.9 95.9 97.1 98.2 99.1

std 9.4 3.4 1.6 1.1 0.9 0.7

Table 2: Performance when the system was trained on data from
participants at Northwestern University and tested on a second
dataset from Purdue University. Proportion of differences be-
tween automatic and manual measures falling at or below a
given tolerance value (in msec).

Type t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

Voiced 63.1 91.9 96.9 98.3 99.3 100

Voiceless 56.5 81.6 86.8 87.2 87.3 89.0

of periodicity in the vowel. All segmentations were inspected
by a fifth, highly trained coder and corrected if needed. It can
be seen from Table 2 that system performance was quite high
even when testing on a novel dataset.

4.2. Negative VOT (prevoicing)

Next, we investigated the performance of our algorithm regard-
ing negative VOT (prevoicing) measurement. We use the data
set from a study of isolated word productions in picture nam-
ing and reading aloud by L1 English speakers and L1 Por-
tuguese/L2 English bilinguals from the Northwestern Univer-
sity community [23]. All tokens were measured by one highly
trained coder. Prevoicing, burst, and onset of periodicity in the
vowel were coded via inspection of the waveform. Reliability
was assessed by a second trained coder who measured 958 to-
kens; agreement was very high (r = 0.972).

We used a subset of this data consisting of 1446 word-initial
voiced stops produced by 10 speakers (3 monolingual, 7 bilin-
gual), evenly split between prevoiced and short-lag VOT. We
used 1074 acoustic segments for a training set, with 15% of
these used as validation set (146,254 frames for training set,
25,809 frames for validation set). The test set contained 372
acoustic segments (60,881 frames). Prevoiced and short-lag
were evenly sampled in training, test and validation sets.

The network did extremely well at detecting prevoicing,
with accuracy rate of 97.8%, precision rate of 95.9% and re-
call rate of 100%. To evaluate performance in measuring VOT,
we report results of the percentage of test examples where au-
tomatic and manual VOT measurements differed by less than a
series of time thresholds. For this analysis, in cases where the
manual and network disagree in the presence of prevoicing, the
duration of VOT was set by the following rule:

• If the network classifies the input as negative VOT, but
the manual annotation was positive, we consider the pre-
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Table 3: Performance on dataset including prevoicing. Pro-
portion of differences between automatic and manual measures
falling at or below a given tolerance value (in msec), where (c)
and (a) stand for correct and all, respectively.

Model Type t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

A
ut

oV
O

T

neg (c) 53.9 77.1 92.7 96.0 98.8 100

neg (a) 49.4 70.8 85.2 88.2 91.0 95.3

pos (c) 53.2 84.4 97.2 98.3 98.7 99.0

pos (a) 47.9 75.9 87.5 88.6 89.4 95.1

D
ee

pV
O

T

neg (c) 63.5 78.1 91.0 95.0 98.9 100

neg (a) 60.7 75.8 89.8 94.6 98.4 100

pos (c) 80.1 95.7 98.4 98.9 100 100

pos (a) 80.1 95.7 98.4 98.9 100 100

voicing duration as the VOT.
• If the network classifies the input as positive VOT, but

the manual annotation was negative, we consider the
burst duration as the VOT.

We compared our result to the state-of-the-art results on this
dataset, reported in [13], provide a baseline for the DeepVOT al-
gorithm’s performance. The results are summarized in Table 3.

5. Discussion
We have presented a new system for detecting positive and neg-
ative VOTs. Our method is based on sequential deep learning,
which allows us to use the same learning framework and the
same set of feature set for measuring both positive and negative
VOTs. For future work we would like to explore the option of
optimizing the network end-to-end including the dynamic pro-
gramming post-processing. Such optimization may further im-
prove the accuracy of such networks.

This approach opens up the possibility of extending auto-
matic analysis of VOT beyond prototypical English productions
to cover the many languages that consistently utilize prevoicing.
DeepVOT will be publicly available at https://github.
com/MLSpeech/DeepVOT.
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