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Abstract
This paper presents our investigations of recurrent neural net-
works (RNNs) for the phrase break prediction task. With the
advent of deep learning, there have been attempts to apply deep
neural networks (DNNs) to phrase break prediction. While deep
neural networks are able to effectively capture dependencies
across features, they lack the ability to capture long-term re-
lations that are spread over time. On the other hand, RNNs are
able to capture long-term temporal relations and thus are better
suited for tasks where sequences have to be modeled. We model
the phrase break prediction task as a sequence labeling task, and
show by means of experimental results that RNNs perform bet-
ter at phrase break prediction as compared to conventional DNN
systems.
Index Terms: phrase break prediction, RNN, word embed-
dings, text to speech synthesis,

1. Introduction
Phrasing is a crucial step in speech synthesis. It breaks long
utterances into meaningful units of information and makes the
speech more understandable. More importantly, in the context
of speech synthesis, phrase breaks are often the first step for
other models of prosody, such as intonation prediction and du-
ration modeling. Any errors made in the initial phrasing step
are propagated to other downstream prosody models, ultimately
resulting in synthetic speech that is unnatural and difficult to un-
derstand.

Phrase breaks are manifested in the speech signal in the
form of several acoustic cues like pauses as well as relative
changes in the intonation and duration of syllables. Acoustic
cues such as pre-pausal lengthening of rhyme, speaking rate,
breaths, boundary tones and glottalization also play a role in in-
dicating phrase breaks in speech [1–3]. However, representing
these non-pause acoustic cues in terms of features is not easy
and not well understood [4]. In this paper we restrict ourselves
only to pauses in speech, and limit our phrase break models to
predicting the locations of pauses while synthesizing speech.
This is the approach followed in [5–10].

Traditionally, phrase break prediction has been achieved by
using machine learning models like regression trees or HMMs
in conjunction with data labeled with linguistic classes (such as
part-of-speech (POS) tags, phrase structure etc.) [11–17]. A lot
of effort has also been directed towards unsupervised methods
of inducing word representations, which can be used as surro-
gates for POS tags/linguistic classes, in the phrase break predic-
tion task [7, 18, 19].

With the advent of deep learning as well as techniques
for deriving/inducing continuous dimensional representations
of words, called ‘word embeddings’, there have been efforts to

apply these techniques to phrase break prediction [6, 8–10, 20].
Continuing our work in [9], in this paper we investigate the use
of recurrent neural network (RNN) models in conjunction with
word embeddings, for phrase break prediction.

The remainder of the paper is organized as follows : Sec-
tion 2 discusses the motivations for our study. In Section 3 we
describe the RNNs used in our work. Section 4 presents our
experimental results, with a discussion on the same. Section 5
concludes this work and Section 6 provides possible directions
for future work.

2. Motivation for our study
Based on the success of deep learning in speech recognition
[21], deep learning techniques have been applied to other areas
of spoken language processing, including language modeling,
text-to-speech synthesis (TTS), intent determination, sentiment
detection / analysis, semantic utterance classification tasks in
SLU etc. While deep neural networks are able to effectively
capture dependencies across features, they lack the ability to
capture long-term relations that are spread over time. On the
other hand, RNNs are able to capture long-term temporal rela-
tions and thus are better suited for tasks where sequences have
to be modeled.

The phrase break prediction task can be described as fol-
lows : “Given an utterance (represented as a sequence of
words) to be synthesized by the TTS, each word is annotated
with either a break (B) or no-break (NB) tag, indicating whether
a pause should be inserted after that word or not”. This task
is similar to several tasks in language processing such as slot
filling in spoken language understanding (SLU), part-of-speech
tagging etc., and thus is ideal to be modeled as a sequence la-
beling task.

Following the work of [22,23], where the authors use RNNs
to improve results on the slot filling task of spoken language
understanding over traditional approaches, we propose to use
RNNs for phrase break prediction.

This work has been primarily motivated by the following
questions:

1. Does capturing long-term temporal dependencies using a
recurrent architecture improve the performance of phrase
break prediction, as compared to short-term dependen-
cies captured using a DNN architecture?

2. What is the best recurrent architecture (in terms of both
performance as well as computational complexity) for
this task?

We experiment our approach on audiobook data and present
results which attempt to answer the questions raised above.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-8852308



3. Using RNNs for phrase break prediction
3.1. RNN inputs

Similar to our earlier work in [9] we use word embeddings
which are randomly initialized and jointly trained with the net-
work on the task at hand, as inputs to the RNN.

3.2. RNN architectures

In this work we use two different RNN architectures : (1) Elman
RNN [24] and (2) Long short term memory (LSTM) [25]. For
the sake of completeness we describe both architectures below.

3.2.1. Elman RNN

An Elman RNN is a simple RNN with hidden layer recurrent
connections. The Elman RNN architecture is illustrated in Fig-
ure 1, where it is unrolled in time across three consecutive word
inputs. This architecture consists of an input layer, a hidden
layer with recurrent connections (shown as dashed lines in the
figure) and an output layer. Each layer represents a set of neu-
rons, and the layers are connected with weights denoted by the
matrices U , W and V .
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Figure 1: Elman RNN architecture for phrase break prediction

The dynamics of an Elman RNN can be described by the
following equations:

s(t) = f(Uw(t) +Ws(t− 1)) (1)
y(t) = g(V s(t)) (2)

where, U represents the input to hidden layer weights, W
represents the recurrent weights in hidden layer and V repre-
sents the hidden to output layer weights. w(t), s(t) and y(t)
are the input, hidden layer state and output respectively at time
t, while s(t − 1) is the hidden layer state at time t − 1. f(.)
and g(.) are the activations of the hidden layer and output layer
respectively. In this work, we set f(.) to be the tanh nonlin-
earity and g(.) to be softmax applied at each time-step. As

mentioned in 3.1 the input w(t) to the RNN at time t, is the
word embedding corresponding to the word at time t.

The RNN is trained using standard backpropagation
through time to maximize the data conditional likelihood :∏

t

P (y(t)|w(1) · · ·w(t)) (3)

The probability distribution is strictly a function of the hid-
den layer activations, which in turn depend only on the inputs
(and their own past values). Thus, the most likely sequence of
phrase break labels can be computed as :

y∗t = argmaxP (y(t)|w(1) · · ·w(t)) (4)

This has the advantage of being online and very simple; it is
not necessary to do a viterbi search over the possible labelings
to find the optimum.

3.2.2. LSTM

We use the standard vanilla LSTM implementation including
forget gate and peephole connections described in [25]. Figure
2 is reproduced from [25] for the sake of completeness and ease
of understanding the equations describing the dynamics of the
LSTM.

Figure 2: LSTM architecture

The forward pass equations of the LSTM are (from [25]) :

zt = f(Wzxt +Rzht−1 + bz) (5)
it = σ(Wixt +Riht−1 + pi � ct−1 + bi) (6)
ft = σ(Wfxt +Rfht−1 + pf � ct−1 + bf ) (7)
ct = it � zt + ft � ct−1 (8)
ot = σ(Woxt +Roht−1 + po � ct + bo) (9)
ht = ot � g(ct) (10)
yt = g(Wohht + boh) (11)

where f(.), g(.) are the tanh nonlinearity, and g(.) is
softmax applied at each time-step. Wz , Wi, Wf , Wo and
Rz , Ri , Rf , Ro are weights from the input and previous state
at unit-input, input, forget, output gates respectively. Woh is the
hidden layer (LSTM unit) to output layer weights and boh is the
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output layer bias. pi, pf and po are the peep-hole connections
and� represents element-wise multiplication. xt, ht and yt are
the input, hidden state and output at time t. As in the case of
Elman RNN, the input xt to the LSTM at time t, is the word
embedding corresponding to the word at time t.

Similar to the Elman RNN, the LSTM is trained using stan-
dard backpropagation through time to maximize the data condi-
tional likelihood : ∏

t

P (yt|x1 · · ·xt) (12)

and the most likely sequence of phrase break labels can be
computed as :

y∗t = argmaxP (yt|x1 · · ·xt) (13)

3.3. Objective function

In all our architectures, we apply a softmax at each time step
in the output layer. The objective function used in this case to
train the RNN is categorical crossentropy :

L = −
∑
c

yc · log(sθ(x)c) (14)

where, c is the number of classes, yc is the correct value for
class c and sθ(x)c is the score assigned by the model to class c,
given the current data point x.

3.4. Learning Methods

Training RNNs with long inputs (as is in the case of utterances
longer than 10 words) is tricky if the updates are done after
each word in the utterance. This is because the predictions at the
current word are made with model parameters that are no longer
current, and the sequence of predictions does not correspond to
one that could be performed with a fixed parameter set. For
example, let us consider an utterance with 20 words. If we want
to perform an update at the 13th word of the utterance with an
unidirectional RNN model, we would have to recompute all the
values from the beginning of the utterance in order to get the
prediction consistent with the current model parameters.

In order to solve this problem, we use the same technique as
in [23], and perform mini-batch gradient descent, with exactly
one utterance per mini-batch. For a given utterance, we perform
one pass that computes the mean loss for that utterance and then
perform a gradient update for that entire utterance. This also
enables us to handle utterances of differing lengths.

4. Experimental results
4.1. Data used

We use speech and audio data taken from the following three au-
diobooks : Emma by Jane Austen (EM), Mansfield Park by Jane
Austen (MP) and Pride and Prejudice by Jane Austen (PAP), in
the LibriVox database1. Each book was recorded by a volunteer
and the style of the corpus is “audio book”.

For each audiobook dataset, the speech and the correspond-
ing text were segmented using the INTERSLICE tool [26], and
a CLUSTERGEN [27] voice was built within the Festival [28]
and Festvox [29] frameworks.

1http://www.librivox.org

4.1.1. Annotation of phrase breaks

As we do not have a dataset with hand annotated phrase breaks,
we derive the location of phrase breaks from the data. Using
the Festival utterance structures generated during the CLUS-
TERGEN voice building process, we extract the location of the
breaks introduced by the speaker. We mark all break relations
labeled B and BB as breaks and all other break relations as non-
breaks. At the end of the process each word in the text corpus is
labeled as a break or non-break depending upon whether or not
a break occurs after that word.

4.2. Experiment 1 : DNNs vs RNNs

In this experiment, we compare the performances of DNN, El-
man RNN and LSTM models on the phrase break prediction
task. We used the Keras2 deep learning library, running the
Theano [30, 31] backend to build our models. For all models
the dimension of word embeddings was fixed at 50. All the re-
current models used a single hidden layer of 200 units, while the
DNN model used two hidden layers of 200 units each. Table 1
shows the parameter as well as hyperparameter values used in
our models. All the code as well as data used in this work are
available online3.

Table 2 shows the results of the DNN, RNN and LSTM sys-
tems on the phrase break prediction task. We report our results
in terms of the F-Measure [34] which is defined as the harmonic
mean of precision and recall.

An examination of Table 2 shows that both the Elman RNN
and LSTM models significantly outperform the DNN model,
while there is no significant difference in the performance of
the Elman RNN as compared to the LSTM model. This exper-
imentally proves that capturing long-term temporal dependen-
cies using a recurrent architecture improves the performance of
phrase break prediction, as compared to a DNN architecture,
and answers the first question raised in Section 2.

Table 2 also shows that for the phrase break prediction task,
there is no significant difference between the performance of the
Elman RNN model and the LSTM model. Elman RNN models
have fewer parameters as compared to LSTMs and so require
fewer computational resources to train and run. As there is
no significant difference in the performance of Elman RNNs as
compared to LSTMs; training a simple Elman RNN is enough
for phrase break prediction and there is no necessity to train
computationally expensive LSTM models. This observation an-
swers the second question raised in Section 2.

4.3. Experiment 2 : Effect of varying the size of the RNN
hidden layer

In this experiment we study the effect of varying the size of the
RNN hidden layer on the performance of the model for phrase
break prediction. We use the Elman RNN model from Exper-
iment 1 (Section 4.2) with all parameter and hyperparameter
values unchanged, except for the hidden (recurrent) layer size.
We vary the hidden layer size and compute the performance, in
terms of the F-measure. Table 3 shows the results of this exper-
iment.

An examination of the results in Table 3 shows that there
is no significant difference in the performance on phrase break
prediction when the Elman RNN hidden layer size is varied.
This is a somewhat surprising result, as one would expect at

2http://keras.io
3https://goo.gl/5ODbeh
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Table 1: Parameter and hyperparameter values used in our models

Parameters DNN Elman RNN LSTM
Word embedding dimension 50 50 50

hidden layer size 200 : 200 200 200
activation function tanh() tanh() tanh()

minibatch size 32 1 1
initial learning rate 0.01 0.01 0.01

Nesterov momentum 0.9 0.3 0.3
weight initialization glorot uniform [32] glorot uniform [32] glorot uniform [32]

inner cells initialization – orthogonal [33] orthogonal [33]
forget gate bias – – 1

Table 2: Performance (in terms of the F-Measure) of the DNN,
RNN and LSTM systems on the phrase break prediction task

F-Measure
Audiobook DNN RNN LSTM

EM 85.92 92.35 92.55
MP 85.56 92.03 92.17
PAP 85.98 92.55 92.82

least 1 - 2 % increase in the performance corresponding to the
increase in the RNN hidden layer size.

Table 3: Effect of varying the hidden (recurrent) layer size on
the performance (in terms of the F-measure) of the Elman RNN
model on the phrase break prediction task

Hidden layer size
Audiobook 200 500 1000

EM 92.35 92.40 92.68
MP 92.03 92.28 92.43
PAP 92.55 92.22 92.70

4.4. Experiment 3 : Effect of varying the dimension of word
embeddings

In this experiment we study the effect of varying the word em-
bedding dimension on the performance of the model for phrase
break prediction. We use the Elman RNN model from Experi-
ment 1 (Section 4.2) with all the parameters and hyperpareme-
ters unchanged, except for the word embedding dimension. We
vary the word embedding dimension and compute the perfor-
mance, in terms of the F-measure. Table 4 shows the results of
this experiment.

An examination of the results in Table 4 shows that there
is no significant difference in the performance on phrase break
prediction when the word embedding dimension is varied. As
with the result obtained in Experiment 2 (Section 4.3) this is a
somewhat surprising and counterintuitive result, as one would
expect at least 1 - 2 % increase in the performance correspond-
ing to the increase in the word embedding dimensions.

Table 4: Effect of varying the word embedding dimension on
the performance (in terms of the F-measure) of the Elman RNN
model on the phrase break prediction task

Word embedding dimension
Audiobook 50 100 150 200

EM 92.35 92.62 92.74 92.75
MP 92.03 92.69 92.25 92.70
PAP 92.55 92.77 92.75 92.73

5. Conclusions
In this paper we model phrase break prediction as a sequence la-
beling task, and show by means of experimental results that re-
current models perform significantly better at phrase break pre-
diction as compared to DNN models. We also show that there is
no significant difference between the performance of the Elman
RNN model and the LSTM model, and that training a simple
Elman RNN is enough and there is no necessity to train com-
putationally expensive LSTM models to perform phrase break
prediction. We also perform experiments to study the effects of
varying the RNN hidden layer dimension and word embedding
dimension on the performance of the model for phrase break
prediction. The results from these experiments are somewhat
surprising and counterintuitive, and require further analysis and
study.

6. Scope for future work
In this paper, while our experimental results have shown that re-
current models perform significantly better in terms of the ob-
jective F-Measure, on phrase break prediction as compared to
DNNs, these results have raised several questions:

1. What specific additional information is captured by the
RNN enabling it to have a significantly better perfor-
mance (in terms of the F-Measure) as compared to a
DNN?

2. How much does the improvement in performance (in
terms of the objective F-measure ) obtained by using
RNNs as compared to DNNs translate into a better per-
ceptual listening experience for the end user of the TTS
system?

We wish to explore these questions in future work. In addi-
tion to these, as part of our future work, we also wish to further
study and analyze the results obtained in Sections 4.3 & 4.4
(Experiments 2 & 3).
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