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Abstract 
Speaker variability has been shown to be a significant 
confounding factor in speech based emotion classification 
systems and a number of speaker normalisation techniques 
have been proposed. However, speaker normalisation in 
systems that predict continuous multidimensional descriptions 
of emotion such as arousal and valence has not been explored. 
This paper investigates the effect of speaker variability in such 
speech based continuous emotion prediction systems and 
proposes a factor analysis based speaker normalisation 
technique. The proposed technique operates directly on the 
feature space and decomposes it into speaker and emotion 
specific sub-spaces. The proposed technique is validated on 
both the USC CreativeIT database and the SEMAINE 
database and leads to improvements of 8.2% and 11.0% (in 
terms of correlation coefficient) on the two databases 
respectively when predicting arousal.  
Index Terms: continuous emotion prediction, speaker 
normalisation, computational paralinguistics, factor analysis, 
regression, relevance vector machine 

1. Introduction 
The dimensional approach for labelling emotions has been 
attracting increasing attention in recent years in the context of 
speech based emotion prediction. The primary advantage for 
using the dimensional approach over discrete emotion labels 
(‘Happy’, ‘Sad’, etc.) is that it has been argued that emotions 
are a continuum and discrete labels, even with a very large 
number of them, cannot capture a continuum. The most 
commonly employed continuous dimensional attributes 
describing emotions are the two dimensions of ‘arousal’ and 
‘valence’, with a third ‘dominance’ dimension increasingly 
being used as well [1] .  
      From an engineering point of view, continuous emotion 
prediction is a regression problem, which outputs a continuous 
value for the different emotion attributes of interest (valence, 
arousal and dominance). Currently, most continuous emotion 
prediction systems adopt high dimensional statistical features 
as the front-end [2] and employ Support Vector Regression, 
Long Short-Term Memory Recurrent Neural Network, 
Gaussian Mixture Regression or Relevance Vector 
Machines(RVM) in the back-end [3-5]. Among these, RVMs 
have recently shown to be well suited for emotion recognition 
[5, 6] and is employed in the systems described in this paper.  

Current research on continuous emotion prediction based 
on speech has primarily focused on either improving the back-

end, developing novel features or improving feature selection 
techniques for choosing the most discriminative feature set 
from a large pool of (generally statistical) features. Ideally, the 
chosen features capture only information related to emotional 
state, but in practice all features also capture acoustic 
variability (including channel effects), speaker variability, 
phonetic variability, etc. [7].  The variability not related to 
emotion information leads to less precise models of emotional 
states, which in turn introduces errors in the prediction. 
Among these, speaker variability has been shown to be one of 
the most significant confounding factor in emotion 
classification systems that recognise categorical emotion 
labels (such as ‘Happy’, ‘Angry’, etc.) [8] and this is expected 
to be true for continuous emotion prediction systems as well.  

Most speech based inference systems address 
classification problems such as speech recognition, speaker 
verification, language identification, etc., and compensation 
methods for speaker variability inspired by channel 
compensation in these classification problems have almost 
universally been developed only for categorical emotion 
classification systems and not for regression systems that 
predict continuous emotional attributes. Some of the recently 
proposed approaches to this speaker variability compensation 
include: (a) normalisation techniques such as joint factor 
analysis based normalisation method [9], iterative feature 
normalisation [10], and an auto-encoder based transfer 
learning method [11]; (b) model compensation techniques 
which improves the model representation to decrease the 
variability [12-14]. Owing to the differences between 
regression and classification, these normalisation methods 
(intended for classification problems) cannot be directly 
applied in a regression framework. Motivated by this lack of 
speaker normalisation methods for continuous emotion 
prediction, this paper first investigates the effect of speaker 
variability and then proposes a normalisation method based on 
factor analysis to deemphasize the speaker component.  

2. Compensation for Speaker Variability 
Almost all continuous emotion prediction systems comprise of 
independent regression systems operating in parallel to predict 
each attribute of interest such as ‘arousal’, ‘valence’, and 
‘dominance’. Typically each sub-system uses short-term frame 
based features (low-level descriptors, abbreviated as LLDs) as 
the basis for prediction and often a larger window spanning 
multiple frames is used to estimate statistical descriptions of 
the LLDs corresponding to the frames within this window, and 
the back-end makes a prediction based on this window level 
statistical description of LLDs. It is common to employ the 
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same regression method in the back-end and/or the same set of 
statistical descriptions in the front-end, of all the attribute 
(arousal, valence, etc.) prediction sub-systems. However, 
different methods may be used in different sub-systems. The 
continuous emotion prediction systems used in the 
experiments described in this paper predict 3 attributes – 
arousal, valence, and dominance with the sub-systems sharing 
a common front-end shown in Figure 1. 
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Figure 1: System Overview – Continuous Emotion 
Prediction 

2.1. Sub-system description 
Detail of the continuous attribute prediction sub-system, 
employed in all the systems described in this paper, is shown 
in Figure 2. The Computational Paralinguistics Challenge 
2013 (ComParE 2013) audio feature set [15], which contains 
65 LLDs and their first derivations, is employed and extracted 
using OpenSMILE [16]. Five statistical descriptions 
(functionals), namely, mean, standard deviation, maximum, 
minimum and range of each feature dimension are applied to 
the LLDs using a 3s window with a 2s shift between windows. 
This window size and shift have been previously shown to 
give good performance [14, 18]. The annotations are averaged 
within these 3s window as well (to correspond to the statistical 
features). RVMs are adopted as the back-end since they have 
previously been shown to perform better than support vector 
regression, which are more commonly employed [5, 6, 19]. 

 

Feature
Vector

Feature
Vector

Speaker Normalisation

LLD FEATURES

Feature
Vector

Feature
Vector

Statistical
Feature
Vector STATISTICAL FEATURES

RVM

Prediction 1
PREDICTIONS

NORMALISED FEATURES

Normalised
Feature
Vector

VAD

Statistical
Feature
Vector

Statistical
Feature
Vector

Normalised
Feature
Vector

Normalised
Feature
Vector

Prediction 2 Prediction M

Frame 3

Window 2
Window 1 Window M

Frame 1

Frame 2 Frame 4

Frame N

 

Figure 2: Sub-system description 

Two types of systems, one with and one without voice 
activity detection (VAD), are investigated in this paper. One 
type of system utilises only voiced speech detected by a VAD 
[17] to train the regression model and unvoiced frames are 
interpolated after the prediction while the other type uses all 
frames to train the regression model. The predictions of all 
systems are smoothed by a binomial filter [6] and the 

performance of all systems are evaluated in terms of mean 
correlation coefficient between the predicted attribute values 
and the ground truth.  

2.2. Proposed Speaker Normalisation 
The proposed speaker normalisation technique views speaker 
identity as an underlying factor that affects speech features 
within a factor analysis framework. Specifically, it assumes 
features extracted from speech are comprised of a common 
vector, a speaker identity component and a residual vector that 
contains mainly emotion-related features (mathematically this 
is similar to the PLDA model [20]) as given below, ��� = � + ��� + ��� (1) 

where ���  represents the feature vector estimated from the 	
� 
frame of speech from the �
�  speaker, �  is the independent 
mean over all speakers, �� is the vector of speaker factors, � is 
the factor loading matrix that captures the speaker variability, 
and ���  is the residual component that contains emotion 
specific information. 

Speaker normalisation is then accomplished by subtracting 
the speaker identity component, ��� , from the raw features, ��� , to give the normalised features, ���: ��� = ��� − ��� − � (2) 

In this model, the speaker factors, ��, is assumed to follow 
a standard normal distribution and the residuals, ��� , is 
assumed to follow a zero-mean normal distribution with a 
covariance �. i.e., ��~�(0, �) (3) ���~�(0, �) (4) 
Parameters � = {�, �, �}  and ��  of the model should be 
estimated during the training phase using all training speakers’ 
data. The training procedure is identical to that given in [20] .  

2.2.1. Model Parameter Estimation 
Let �� = [����, ���� ⋯ ���� �]�  represents concatenated 
window-level features from the �
�  speaker, where �  is the 
number of speakers and �� represents the number of feature 
vectors from the �
� speaker. In the training phase, the aim is 
to find the optimal parameters, �, that maximises the model 
likelihood, �(�|�), given some training data �. Here, the EM 
algorithm is used to solve the problem as follows: 

Equation (1) can be rewritten as: 

�� = ��⋮� + !�⋮�" �� + ! ���⋮����
" (5) 

It is helpful to introduce the notation, # = [��, ��, … , ��]� , $ = [��, ��, … , ��]� and �� = %���� , ���� , … , ����� &�  with mean 
zero and covariance matrix Σ*. 

�* = -� 0 ⋯ 00 � ⋯ 0⋮0 ⋮0 ⋱⋯ ⋮�/ 
 

(6) 

During the E-step, �(��|��, �) is estimated as:  

�(��|��, �) = �(��|��, �)�(��)�(��) ∝ �(��|��, �)�(��) (7) 

Where, the posterior probability �(��|��, �)  is a Gaussian 
distribution as below:  �(��|��, �) = �($ + #��, �*)      (8) 
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Since the two terms on the right side of Equation (7) are both 
Gaussian distributions, the posterior distribution is also a 
Gaussian distribution given as: �(��|��, �) = �(2[��], 345(��))     (9) 
where, 2[��] = (#��*67# + �)6�#8�*67(�� − $) (10) 345[��] = (#��*67# + �)6� (11) 

In the M-step, the model parameters, � = {�, �, �} , are 
optimised to maximise 9(�
6�, �
) , where :  indicates the 
iteration number. 

9(�
6�, �
)
= ; ; < �(��|��, �
6�)log [ �(���|��, �
)�(��)��

�?�
@

�?� ]A�� (12) 

 The updated parameters � can be obtained by calculating 
the derivatives of 9(�
6�, �
) and are given as:  

� = 1� ∗ �� ; ; ���
��

�?�
@

�?�  (13) 

� = (; ;(���
��

�?�
@

�?� − �)2[��]�)(; 2[�����]@
�?� )6� (14) 

� = 1� ∗ �� ; ; A�DE[(���
��

�?�
@

�?� − �)F��� − �G�

− �2[��]F��� − �G�] 
(15) 

2.2.2. Speaker Normalisation for Test Utterances 
During the test phase, the speaker factors, �
 , are estimated 
from �(�
|H
, �), where H
  represents the test data. The test 
speaker factor �
  is estimated as the expected value, 2[�
] , 
given by (16), where # = �  and �* = �  since the 
normalisation is carried out at the window-level, and the 
normalised feature vectors, H̃
 , are calculated as given by 
equation (17). 2[�
] = (���67� + �)6��8�67(H
 − �) (16) H̃
 = H
 − �2[�
] − � (17) 

3. Database  
The USC CreativeIT database [21] and the SEMAINE 
database [22] were utilised to evaluate the proposed method. 
The CreativeIT database is an audio-visual database recorded 
using the theatrical improvisation technique of Active 
Analysis. Spontaneous dialogues and acted dialogues are both 
recorded in a dyadic conversation. It contains 8 sessions of 90 
sentences recorded from 16 speakers, each of which consists 
of 6-14 sentences. The annotation contains continuous rating 
of arousal, valence and dominance attributes obtained by 
asking raters to watch the video sessions and use 
FEELTRACE tool [23] that can be continuously moved to 
record their perceived emotion attribute values (values lie 
between -1 and 1). The final continuous attribute values were 
obtained by averaging all individual annotations.  

The SEMAINE database uses the Sensitive Artificial 
Listener paradigm to record natural conversations between a 
person and an operator (role-played by a person). The operator 
assumes one of four personalities to elicit different emotion 
states of the user whose data was used in the experiments. In 

total, speech data from 18 speakers (users) recorded over 24 
sessions are used in the experiment. Annotations are carried 
out using FEELTRACE tool. The overall arousal, valence and 
dominance (power) ratings were obtained by averaging the 
corresponding ratings from 6-8 raters. 

4. Experimental Results 
Three experiments were conducted to establish the impact of 
speaker variability on the performance of continuous emotion 
prediction systems, to investigate the effect of the proposed 
speaker normalisation technique on the feature space and to 
validate its use in an emotion prediction system.  

4.1. Impact of Speaker Variability 
In order to determine if speaker variability had a significant 
negative impact on the performance of continuous emotion 
prediction systems, the performance of a speaker independent 
emotion prediction system was compared to that of speaker-
specific emotion prediction systems on the USC CreativeIT 
database. Speaker-specific emotion prediction systems refer to 
those that are trained and tested on data from the same 
speaker. For this experiment, speaker-specific systems were 
trained on 2/3rd of the data and tested on the remaining 1/3rd of 
the data from 14 of the 16 speakers in the database (there was 
insufficient data from the other 2 to train and test a speaker-
specific system). The performance of the speaker independent 
system is estimated on data from all 8 sessions in the database 
in a leave-one-session-out cross-fold validation. Both systems 
only use voiced speech for training (refer to section 2.1) and 
no feature normalisation is employed. 

The results of the experiment are shown in Figure 3, where 
the performance of the 14 speaker-specific system as well as 
the average speaker-specific performance is compared to the 
performance of the speaker independent system in terms of 
mean correlation coefficient between predicted attribute values 
and ground truth labels based on human annotators (included 
in the database). The superior performance of speaker-specific 
system in general suggests that speaker variability degrades 
the performance of speech based continuous emotion 
prediction systems. It should be noted that the speaker-
independent models are trained with approximately 15 times 
as much data as the speaker-specific systems and consequently 
the comparison is intended to be indicative only and not 
definitive. 

4.2. F-ratio measurement 
In order to investigate the effect of the normalisation on raw 
features, F-ratio is a used as a measure of dissimilarity 
between speaker classes [24]. It is the ratio of inter-class 
variability over intra-class variability given by: 

J_KD:�4 = 1� ∑ (�� − �)@�?�1� ∙ �� ∑ ∑ (��� − ��)���?�@�?�
 (18) 

Where �� represents the mean of features estimated from the �
� speaker and other notations are kept same as section 2.2. 
In this experiment, we treat each speaker as a distinct class 

and adopt the average F-ratio of speaker classes as a measure 
of feature dissimilarity between speakers per feature 
dimension. A larger F-ratio value indicates a more separated 
feature and therefore greater speaker variability. 
      The features employed in the systems outlined in section 
2.1 are used in this experiment as well. The proposed speaker 
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Figure 3: Speaker independent vs. speaker-specific systems - correlation coefficient evaluated on the USC CreativeIT database. 

normalisation method is applied with 13-dimensional speaker 
factor vectors (one less than the number of speakers in the 
training-set in each fold of cross-fold validation) and 10 
iterations of EM algorithm for parameter estimation. F-ratios 
of the first 50 dimensions of the un-normalised feature vector 
are compared with the F-ratios of corresponding 50 
dimensions of the normalised feature vector in Figure 4. Here 
only the first 50 out of 650 are shown in order to reduce clutter 
and make the graph readable but the relative relationships 
between original features, speaker identity component 
( �2[�
] ) and normalised features were observed to be 
generally consistent across all 650 dimensions. In addition the 
F-ratios of the same 50 dimensions of the speaker identity 
component are also shown in Figure 4. From the figure it can 
be seen that consistently the largest F-ratios correspond to the 
speaker identity component and the smallest F-ratios to the 
normalised feature vectors which suggests that the proposed 
speaker normalisation method is operating as expected and is 
able to decompose the feature space into a speaker subspace 
and a residual subspace (which includes emotion information).  

 
Figure 4: F-ratio comparison among original features,  
speaker component and normalised features 

4.3. Factor analysis based speaker normalisation 
The final validation of the proposed speaker normalisation 
technique was carried out on both the USC CreativeIT 
database and the SEMAINE database by comparing the 
performances of the basic emotion prediction systems outlined 
in section 2.1 with and without speaker normalisation.  

The proposed technique was applied with 13-dimensional 
and 12-dimensional speaker factor vectors with the USC 
CreativeIT and the SEMAINE databases respectively. The 
dimensionality of the speaker factor vectors were chosen 
based on the number of speakers in the training dataset. The 
speaker normalisation model parameters were estimated with 
10 iterations of the EM algorithms in both cases. 

The experiments on the USC CreativeIT database were 
carried out in a leave-one-session-out cross validation manner. 
The SEMAINE database on the other hand was split into a 
distinct training set comprising of speech data from 12 
randomly selected speakers and a distinct test comprising of 
speech from the remaining 6 speakers. The accuracies of 
continuous emotion prediction systems with and without the 

proposed normalisation are shown in Table 1. As mentioned in 
section 2.1, two versions of each system were tested – one 
using only voiced speech and another using all speech. 

Table 1.  Performance on two databases. A means arousal, V 
means valence and D means dominance. 

 Mean Correlation Coefficient (CC) 
  A V D 

U
SC

 
C

re
at

iv
eI

T 
D

at
ab

as
e 

Model with VAD 0.447 0.220 0.201 
Model with VAD 
+ Normalisation 

0.483 0.246 0.215 

Model without  VAD 0.527 0.238 0.237 
Model without  VAD 
+Normalisation 

0.526 0.231 0.220 
 

SE
M

A
IN

E
 

D
at

ab
as

e 

Model with VAD 0.453 0.106 0.623 
Model with VAD 
+ Normalisation 

0.503 0.208 0.635 

Model without  VAD 0.429 0.116 0.611 
Model without  VAD 
+Normalisation 

0.521 0.211 0.643 

It can be seen the proposed speaker normalisation 
consistently improves the performance of emotion prediction 
systems that use voiced speech on both databases, which is 
relatively 8.2%, 11.7% and 7% in USC CreativeIT and 11.0%, 
95.7% and 1.9% in SEMAINE for arousal, valence and 
dominance respectively. However, it does not show 
improvement in the system that uses all frames in USC 
CreativeIT database. This may be due to the slightly higher 
proportion of unvoiced speech in the USC CreativeIT database 
(16% of all frames) when compared with the SEMAINE 
database (5% of all frames). Finally it should be noted that the 
only other published system evaluated using audio data only 
from the USC CreativeIT database using an identical cross-
fold validation reported a mean correlation coefficient of 0.478 
for arousal and 0.133 for dominance (valence was not 
reported) [14]. 

5. Conclusion 
This paper investigated the negative impact of speaker 
variability on continuous emotion prediction system and 
proposed a novel factor analysis based normalisation method. 
The normalisation technique was validated on both the 
CreativeIT and SEMAINE databases and shown to be 
particularly effective on voiced speech. In addition, analyses 
of the proposed decomposition of the feature space based on 
F-ratio of the different components revealed that the technique 
was able to isolate speaker variability reasonably well. As the 
first speaker normalisation technique proposed for continuous 
emotion prediction, it opens up avenues for further 
improvement. 
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