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Abstract
Multimedia or spoken content presents more attractive in-

formation than plain text content, but it’s more difficult to dis-
play on a screen and be selected by a user. As a result, ac-
cessing large collections of the former is much more difficult
and time-consuming than the latter for humans. It’s highly at-
tractive to develop a machine which can automatically under-
stand spoken content and summarize the key information for
humans to browse over. In this endeavor, we propose a new
task of machine comprehension of spoken content. We define
the initial goal as the listening comprehension test of TOEFL,
a challenging academic English examination for English learn-
ers whose native language is not English. We further propose
an Attention-based Multi-hop Recurrent Neural Network (AM-
RNN) architecture for this task, achieving encouraging results
in the initial tests. Initial results also have shown that word-level
attention is probably more robust than sentence-level attention
for this task with ASR errors.
Index Terms: spoken question answering, TOEFL, deep learn-
ing, attention model, recurrent neural networks

1. Introduction
With the popularity of shared videos, social networks, online
course, etc, the quantity of multimedia or spoken content is
growing much faster beyond what human beings can view or
listen to. Accessing large collections of multimedia or spo-
ken content is difficult and time-consuming for humans, even
if these materials are more attractive for humans than plain text
information. Hence, it will be great if the machine can automat-
ically listen to and understand the spoken content, and even vi-
sualize the key information for humans. This paper presents an
initial attempt towards the above goal: machine comprehension
of spoken content. In an initial task, we wish the machine can
listen to and understand an audio story, and answer the ques-
tions related to that audio content. TOEFL listening compre-
hension test is for human English learners whose native lan-
guage is not English. This paper reports how today’s machine
can perform with such a test.

The listening comprehension task considered here is highly
related to Spoken Question Answering (SQA) [1, 2]. In SQA,
when the users enter questions in either text or spoken form,
the machine needs to find the answer from some audio files.
SQA usually worked with ASR transcripts of the spoken con-
tent, and used information retrieval (IR) techniques [3] or relied
on knowledge bases [4] to find the proper answer. Sibyl [5], a
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Figure 1: An example of TOEFL listening comprehension test.
The story is given in audio format, and its manual transcription
is shown. The question and choices are provided in text format.

factoid SQA system, used some IR techniques and utilized sev-
eral levels of linguistic information to deal with the task. Ques-
tion Answering in Speech Transcripts (QAST) [6–8] has been
a well-known evaluation program of SQA for years. However,
most previous works on SQA mainly focused on factoid ques-
tions like “What is name of the highest mountain in Taiwan?”.
Sometimes this kind of questions may be correctly answered
by simply extracting the key terms from a properly chosen ut-
terance without understanding the given spoken content. More
difficult questions that cannot be answered without understand-
ing the whole spoken content seemed rarely dealt with previ-
ously.

With the fast development of deep learning, neural net-
works have successfully applied to speech recognition [9–11]
or NLP tasks [12,13]. A number of recent efforts have explored
various ways to understand multimedia in text form [14–19].
They incorporated attention mechanisms [17] with Long Short-
Term Memory based networks [20]. In Question Answering
field, most of the works focused on understanding text docu-
ments [21–24]. Even though [25] tried to answer the question
related to the movie, they only used the text and image in the
movie for that. It seems that none of them have studied and
focused on comprehension of spoken content yet.

2. Task Definition and Contributions
In this paper, we develop and propose a new task of machine
comprehension of spoken content which was never mentioned
before to our knowledge. We take TOEFL listening compre-
hension test as an corpus for this work. TOEFL is an English
examination which tests the knowledge and skills of academic
English for English learners whose native languages is not En-
glish. In this examination, the subjects would first listen to an
audio story around five minutes and then answer several ques-
tion according to that story. The story is related to the college
life such as conversation between the student and the profes-
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Figure 2: The overall structure of the proposed Attention-based
Multi-hop Recurrent Neural Network (AMRNN) model.
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sor or a lecture in the class. Each question has four choices
where only one is correct. An real example in the TOEFL ex-
amination is shown in Fig. 1. The upper part is the manual tran-
scription of a small part of the audio story. The questions and
four choices are listed too. The correct choice to the question
in Fig. 1 is choice A. The questions in TOEFL are not simple
even for a human with relatively good knowledge because the
question cannot be answered by simply matching the words in
the question and in the choices with those in the story, and key
information is usually buried by many irrelevant utterances. To
answer the questions like “Why does the student go to profes-
sor’s office?”, the listeners have to understand the whole audio
story and draw the inferences to answer the question correctly.
As a result, this task is believed to be very challenging for the
state-of-the-art spoken language understanding technologies.

We propose a listening comprehension model for the task
defined above, the Attention-based Multi-hop Recurrent Neu-
ral Network (AMRNN) framework, and show that this model is
able to perform reasonably well for the task. In the proposed
approach, the audio of the stories is first transcribed into text
by ASR, and the proposed model is developed to process the
transcriptions for selecting the correct answer out of 4 choices
given the question. The initial experiments showed that the pro-
posed model achieves encouraging scores on the TOEFL listen-
ing comprehension test. The attention-mechanism proposed in
this paper can be applied on either word or sentence levels. We
found that sentence-level attention achieved better results on the
manual transcriptions without ASR errors, but word-level at-
tention outperformed the sentence-level on ASR transcriptions
with errors.

3. Proposed Approach
The overall structure of the proposed model is in Fig 2. The
input of model includes the transcriptions of an audio story, a
question and four answer choices, all represented as word se-

quences. The word sequence of the input question is first rep-
resented as a question vector VQ in Section 3.1. With the ques-
tion vector VQ, the attention mechanism is applied to extract
the question-related information from the story in Section 3.2.
The machine then goes through the story by the attention mech-
anism several times and obtain an answer selection vector VQn

in Section 3.3. This answer selection vector VQn is finally used
to evaluate the confidence of each choice in Section 3.4, and
the choice with the highest score is taken as the output. All
the model parameters in the above procedure are jointly trained
with the target where 1 for the correct choice and 0 otherwise.

3.1. Question Representation

Fig. 3 (A) shows the procedure of encoding the input ques-
tion into a vector representation VQ. The input question is a
sequence of T words, w1, w2, ..., wT , every word Wi repre-
sented in 1-Of-N encoding. A bidirectional Gated Recurrent
Unit (GRU) network [26–28] takes one word from the input
question sequentially at a time. In Fig 3 (A), the hidden layer
output of the forward GRU (green rectangle) at time index t is
denoted by yf (t), and that of the backward GRU (blue rect-
angle) is by yb(t). After looking through all the words in the
question, the hidden layer output of forward GRU network at
the last time index yf (T ), and that of backward GRU network
at the first time index yb(1), are concatenated to form the ques-
tion vector representation VQ, or VQ = [yf (T )‖yb(1)]1.

3.2. Story Attention Module

Fig. 3 (B) shows the attention mechanism which takes the ques-
tion vector VQ obtained in Fig. 3 (A) and the story transcrip-
tions as the input to encode the whole story into a story vec-
tor representation VS . The story transcription is a very long
word sequence with many sentences, so we only show two sen-
tences each with 4 words for simplicity. There is a bidirec-
tional GRU in Fig 3 (B) encoding the whole story into a story
vector representation VS . The word vector representation of
the t-th word St is constructed by concatenating the hidden
layer outputs of forward and backward GRU networks, that
is St = [yf (t)‖yb(t)]. Then the attention value αt for each
time index t is the cosine similarity between the question vec-
tor VQ and the word vector representation St of each word,
αt = St � VQ

2. With attention values αt, there can be two
different attention mechanisms, word-level and sentence-level,
to encode the whole story into the story vector representations
VS .

Word-level Attention: We normalize all the attention val-
ues αt into α′

t such that they sum to one over the whole story.
Then all the word vector St from the bidirectional GRU net-
work for every word in the story are weighted with this normal-
ized attention value α′

t and sum to give the story vector, that is
VS =

∑
t α

′
tSt.

Sentence-level Attention: Sentence-level attention means
the model collects the information only at the end of each sen-
tence. Therefore, the normalization is only performed over
those words at the end of the sentences to obtain α′′

t . The story
vector representation is then VS =

∑
t=eos α

′′
t ∗ St, where

only those words at the end of sentences (eos) contribute to the
weighted sum. So VS = α′′

4 ∗ S4 + α′′
8 ∗ S8 in the example of

the Fig.3

1The symbol [·‖·] denotes concatenation of two vectors in this paper.
2The symbol � denotes cosine similarity between two vectors.
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3.3. Hopping

The overall picture of the proposed model is shown in Fig 2, in
which Fig. 3 (A) and (B) are component modules (labeled as
Fig. 3 (A) and (B)) of the complete proposed model. In the left
of Fig. 2, the input question is first converted into a question
vector VQ0 by the module in Fig. 3 (A). This VQ0 is used to
compute the attention values αt to obtain the story vector VS1

by the module in Fig. 3 (B). Then VQ0 and VS1 are summed to
form a new question vector VQ1 . This process is called the first
hop (hop 1) in Fig. 2. The output of the first hop VQ1 can be
used to compute the new attention to obtain a new story vector
VS1 . This can be considered as the machine going over the story
again to re-focus the story with a new question vector. Again,
VQ1 and VS1 are summed to form VQ2 (hop 2). After n hops (n
should be pre-defined), the output of the last hop VQn is used
for the answer selection in the Section 3.4.

3.4. Answer Selection

As in the upper part of Fig. 2, the same way previously used to
encode the question into VQ in Fig. 3 (A) is used here to encode
four choice into choice vector representations VA, VB , VC , VD .
Then the cosine similarity between the output of the last hop
VQn and the choice vectors are computed, and the choice with
highest similarity is chosen.

4. Experiments

4.1. Experimental Setup

• Dataset Collection: The collected TOEFL dataset in-
cluded 963 examples in total (717 for training, 124 for valida-
tion, 122 for testing). Each example included a story, a question
and 4 choices. Besides the audio recording of each story, the
manual transcriptions of the story are also available. We used
a pydub library [29] to segment the full audio recording into
utterances. Each audio recording has 57.9 utterances in aver-
age. There are in average 657.7 words in a story, 12.01 words
in question and 10.35 words in each choice.

• Speech Recognition: We used the CMU speech recog-
nizer - Sphinx [30] to transcribe the audio story. The recogni-
tion word error rate (WER) was 34.32%.

• Pre-processing: We used a pre-trained 300 dimension
glove vector model [31] to obtain the vector representation for
each word. Each utterance in the stories, question and each
choice can be represented as a fixed length vector by adding
the vectors of the all component words. Before training, we
pruned the utterances in the story whose vector representation
has cosine distance far from the question’s. The percentage of
the pruned utterances was determined by the performance of
the model on the development set. The vector representations
of utterances, questions and choices were only used in this pre-
processing stage and the baseline approaches in Section 4.2, not
used in the proposed model.

• Training Details: The size of the hidden layer for both the
forward and backward GRU networks were 128. All the bidi-
rectional GRU networks in the proposed model shared the same
set of parameters to avoid overfitting. We used RmsProp [32]
with initial learning rate of 1e-5 with momentum 0.9. Dropout
rate was 0.2. Batch size was 40. The number of hop was tuned
from 1 to 3 by development set.

Table 1: Accuracy results of different models
Model Manual ASR

longest 22.95%
(a) Choice length shortest 35.25%

different 30.33%
(b) Within choices similar 36.07%

different 27.87%
(c) Question choices 24.59%
(d) Sliding Window 33.61% 31.15%
(e) Memory Network 39.17% 39.17%
(f) Our model word 49.16% 48.33%

sentence 51.67% 46.67%

4.2. Baselines

We compared the proposed model with some commonly used
simple baselines in [25] and the memory network [17].
• Choice Length: The most naive baseline is to select the

choices based on the number of words in it without listening
to the stories and looking at the questions. This included: (i)
selecting the longest choice, (ii) selecting the shortest choice or
(iii) selecting the choice with the length most different from the
rest choices.
• Within-Choices similarity: With the vector representa-

tions for the choices in pre-processing of Section 4.1, we com-
puted the cosine distance among the four choices and selected
the one which is (i) the most similar to or (ii) the most different
from the others.
• Question and Choice Similarity: With the vector repre-

sentations for the choices and questions in pre-processing of
Section 4.1, the choice with the highest cosine similarity to the
question is selected.
• Sliding Window [25, 33]: This model try to found a win-

dow of W utterances in the story with the maximum similarity
to the question. The similarity between a window of utterances
and a question was the averaged cosine similarity of the utter-
ances in the window and the question by their glove vector rep-
resentation. After obtaining the window with the largest cosine
similarity to the question, the confidence score of each choice
is the average cosine similarity between the utterances in the
window and the choice. The choice with the highest score is
selected as the answer.
• Memory Network [17]: We implemented the memory

network with some modifications for this task to find out if
memory network was able to deal it. The original memory net-
work didn’t have the embedding module for the choices, so we
used the module for question in the memory network to embed
the choices. Besides, in order to have the memory network se-
lect the answer out of four choices, instead of outputting a word
in its original version, we computed the cosine similarity be-
tween the the output of the last hop and the choices to select the
closest choice as the answer. We shared all the parameters of
embedding layers in the memory network for avoiding overfit-
ting. Without this modification, very poor results were obtained
on the testing set. The embedding size of the memory network
was set 128, stochastic gradient descent was used as [17] with
initial learning rate of 0.01. Batch size was 40. The size of hop
was tuned from 1 to 3 by development set.

4.3. Results

We used the accuracy (number of question answered correctly /
total number of questions) as our evaluation metric. The results
are showed in Table 1. We trained the model on the manual
transcriptions of the stories, while tested the model on the test-
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Figure 4: Visualization of the attention weights in sentence-level and in word-level on a small section of the manual or ASR tran-
scriptions of an example story given a question. The darker the color, the higher the weights. The question of this story is “What is a
possible origin of Venus’clouds?” and the correct answer choice is “Gases released as a result of volcanic activity”.

ing set with both manual transcriptions (column labelled “Man-
ual”) and ASR transcriptions (column labelled “ASR”).
• Choice Length: Part (a) shows the performance of three

models for selecting the answer with the longest, shortest or
most different length, ranging from 23% to 35%.
• Within Choices similarity: Part (b) shows the perfor-

mance of two models for selecting the choice which is most
similar to or the most different from the others. The accuracy
are 36.09% and 27.87% respectively.
• Question and Choice Similarity: In part (c), selecting the

choice which is the most similar to the question only yielded
24.59%, very close to randomly guess.
• Sliding Window: Part (d) for sliding window is the first

baseline model considering the transcription of the stories. We
tried the window size {1,2,3,5,10,15,20,30} and found the best
window size to be 5 on the development set. This implied
the useful information for answering the questions is probably
within 5 sentences. The performance of 31.15% and 33.61%
with and without ASR errors respectively tells how ASR errors
affected the results, and the task here is too difficult for this ap-
proach to get good results.
• Memory Network: The results of memory network in

part (e) shows this task is relatively difficult for it, even though
memory network was successful in some other tasks. However,
the performance of 39.17% accuracy was clearly better than all
approaches mentioned above, and it’s interesting that this re-
sult was independent of the ASR errors and the reason is under
investigation. The performance was 31% accuracy when we
didn’t use the shared embedding layer in the memory network.
• AMRNN model: The results of the proposed model are

listed in part (f), respectively for the attention mechanism on
word-level and sentence-level. Without the ASR errors, the pro-
posed model with sentence-level attention gave an accuracy as
high as 51.67%, and slightly lower for word-level attention. It’s
interesting that without ASR errors, sentence-level attention is
about 2.5% higher than word-level attention. Very possibly be-
cause that getting the information from the whole sentence is
more useful than listening carefully at every words, especially
for the conceptual and high-level questions in this task. Pay-
ing too much attention to every single word may be a bit noisy.
On the other hand, the 34.32% ASR errors affected the model
on sentence-level more than on word-level. This is very pos-
sibly because the incorrectly recognized words may seriously
change the meaning of the whole sentences. However, with at-
tention on word-level, when a word is incorrectly recognized,
the model may be able to pay attention on other correctly rec-
ognized words to compensate for ASR errors and still come up
with correct answer.

4.4. Analysis on a typical example

Fig 4 shows the visualization of the attention weights obtained
for a typical example story in the testing set, with the proposed
AMRNN model using word-level or sentence-level attention
on manual or ASR transcriptions respectively. The darker the
color, the higher the weights. Only a small part of the story
is shown where the response of the model made good differ-
ence. This story was mainly talking about the thick cloud and
some mysteries on Venus. The question for this story is “What
is a possible origin of Venus’clouds?” and the correct choice is
“Gases released as a result of volcanic activity”. In the manual
transcriptions cases (left half of Fig 4), both models, with word-
level or sentence-level attention, answered the question right
and focused on the core and informative words/sentences to the
question. The sentence-level model successfully captured the
sentence including “...volcanic eruptions often omits gases.”;
while the word-level model captured some important key words
like “volcanic eruptions”, “emit gases”. However, in ASR
cases (right half of Fig 4), the ASR errors misled both models
to put some attention on some irrelevant words/sentences. The
sentence-level model focus on the irrelevant sentence “In other
area, you got canyons...”; while the word-level model focused
on some irrelevant words “canyons”, “rift malaise”, but still
capture some correct important words like “volcanic” or “erup-
tions” to answer correctly. By the darkness of the color, we can
observe that the problem caused by ASR errors was more se-
rious for the sentence-level attention when capturing the key
concepts needed for the question. This may explain why in part
(f) of Table 1 we find degradation caused by ASR errors was
less for word-level model than for sentence-level model.

5. Conclusions
In this paper we create a new task with the TOEFL corpus.
TOEFL is an English examination, where the English learner
is asked to listen to a story up to 5 minutes and then answer
some corresponding questions. The learner needs to do de-
duction, logic and summarization for answering the question.
We built a model which is able to deal with this challenging
task. On manual transcriptions, the proposed model achieved
51.56% accuracy, while the very capable memory network got
only 39.17% accuracy. Even on ASR transcriptions with WER
of 34.32%, the proposed model still yielded 48.33% accuracy.
We also found that although sentence-level attention achieved
the best results on the manual transcription, word-level attention
outperformed the sentence-level when there were ASR errors.

2734



6. References
[1] P. R. C. i Umbert, “Factoid question answering for spoken docu-

ments,” Ph.D. dissertation, Universitat Politècnica de Catalunya,
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question-answering system for spoken documents,” ACM Trans.
Inf. Syst., 2012.

[6] J. Turmo, P. R. Comas, S. Rosset, O. Galibert, N. Moreau,
D. Mostefa, P. Rosso, and D. Buscaldi, Multilingual Information
Access Evaluation I. Text Retrieval Experiments: 10th Workshop
of the Cross-Language Evaluation Forum, CLEF 2009, Corfu,
Greece, September 30 - October 2, 2009, Revised Selected Pa-
pers. Springer Berlin Heidelberg, 2010, ch. Overview of QAST
2009, pp. 197–211.

[7] J. Turmo, P. Comas, S. Rosset, L. Lamel, N. Moreau, and
D. Mostefa, “Overview of QAST 2008,” in Working Notes for the
CLEF 2008 Workshop,, 2008.

[8] D. Giampiccolo, P. Forner, J. Herrera, A. Peñas, C. Ayache,
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H. Daumé III, “A neural network for factoid question answering
over paragraphs.” in EMNLP, 2014, pp. 633–644.

[24] A. Fader, L. Zettlemoyer, and O. Etzioni, “Open question answer-
ing over curated and extracted knowledge bases,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2014, pp. 1156–1165.

[25] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun,
and S. Fidler, “Movieqa: Understanding stories in movies through
question-answering,” arXiv preprint arXiv:1512.02902, 2015.

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.
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