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Abstract
Hidden Markov model (HMM) is one of the popular techniques
for story segmentation, where hidden Markov states represent
the topics, and the emission distributions of n-gram language
model (LM) are dependent on the states. Given a text docu-
ment, a Viterbi decoder finds the hidden story sequence, with a
change of topic indicating a story boundary. In this paper, we
propose a discriminative approach to story boundary detection.
In the HMM framework, we use deep neural network (DNN)
to estimate the posterior probability of topics given the bag-of-
words in the local context. We call it the DNN-HMM approach.
We consider the topic dependent LM as a generative modeling
technique, and the DNN-HMM as the discriminative solution.
Experiments on topic detection and tracking (TDT2) task show
that DNN-HMM outperforms traditional n-gram LM approach
significantly and achieves state-of-the-art performance.
Index Terms: Deep neural network, Hidden Markov Model,
story segmentation

1. Introduction
Story segmentation is a task to partition a stream of text, au-
dio or video into a sequence of topically coherent segments
named as stories [1, 2, 3, 4]. The task serves as a necessary
precursor for subsequent tasks such as topic detection and track-
ing [1, 5], summarization [6], information extraction [7], index-
ing and retrieval [8]. Automatic story segmentation has gained
ever-increasingly interests with the explosive growth of multi-
media data. Specifically, this paper addresses the task of seg-
menting a speech recognition transcript (i.e., from broadcast
news) to a sequence of stories by a hybrid deep neural net-
work (DNN) - hidden Markov model (HMM) approach that has
achieved tremendous success in speech recognition [9].

Story segmentation has been historically studied through d-
ifferent media types (audio/prosodic [10, 11, 12], video [13] and
text [14, 2, 15, 16, 4, 17]) and genres (broadcast news [18],
meeting recordings [17] and lectures [19, 10]). With recen-
t progress in large vocabulary continuous speech recognition
(LVCSR), lexical cohesion based methods have drawn much at-
tention for story segmentation of spoken documents [4, 20, 21].
These methods work on a sequence of words and reveal sto-
ry transitions that manifest semantic topic shifts. As one of the
earliest approaches, TextTiling [4, 20] measures the lexical sim-
ilarity (i.e. via cosine) between adjacent sentences and story
boundaries are discovered at the local similarity minima, where
sentences are represented by bag-of-words (BOW) or term fre-
quency – inverted document frequency (tf-idf ) vectors. TextTil-

ing is one of the methods focusing on identifying boundaries
through local lexical comparison, while other lexical methods
aims to find an optimal segmentation under some global crite-
ria [22, 23]. Popular approaches include dynamic programing
(DP) [22, 23, 24], Ncuts [25], BayesSeg [26] and dd-CRP [27].

The lexical cohesion based approaches mentioned above
mostly rely on the tf-idf representation of a sentence, which
is not necessarily attached to topics of stories. Instead, proba-
bilistic topic models, e.g., probabilistic latent semantic analysis
(pLSA) [28], latent Dirichlet allocation (LDA) [29] and Lap-
PLSA [28], learn from a training corpus, to map a tf-idf repre-
sentation to a topic representation [25]. These generative topic
models assume documents are comprised of topics following
certain distributions and words are generated from these topic-
s. Significant performance improvements have been observed
when a tf-idf representation is substituted by a topic represen-
tation in both TextTiling and DP approaches [30, 31].

As another generative model, hidden Markov model (HM-
M) [32] has been successfully introduced to automatically infer
story boundaries [15, 16, 14]. A story is treated as an instance
of an underlying topic (a hidden state) and words are generat-
ed from the distribution of the topic. The transition from one
topic to another indicates a story boundary. Transition and e-
mission probabilities of the hidden states can be inferred from a
training corpus. Specifically, the emission probability of a state
is inferred by a topic-dependent language model (LM), which is
calculated by word counting. In the decoding process, the Viter-
bi algorithm is used to label the input sequences. The position
of topic change is regarded as a story boundary.

In this paper, we introduce the DNN-HMM hybrid model
to the story segmentation task. Unlike the topic-dependent LM
used in traditional HMM-based approach [15, 16, 14], which
is a generative model of the word sequence, we use a DNN to
directly map the word observation into topic posterior proba-
bilities. The input features of the DNN is the BOW computed
from a local context of every candidate story boundary. DNN
is known to be able to learn meaningful continuous features for
words and hence has better discriminative and generalization
capability than n-gram models [33, 34].

2. DNN-HMM Model for Story
Segmentation

Fig. 1 depicts the architecture of the proposed DNN-HMM ap-
proach for story segmentation. Each HMM state represents a
topic and a transition matrix is used to model the probabilities
of switching between stories. The DNN produces topic posteri-
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Figure 1: The DNN-HMM approach for story segmentation.

or probabilities given the BOW computed from the local context
of candidate story boundaries. The posterior is converted to the
likelihood score for Viterbi decoding (i.e. the emission proba-
bility of the states) using the Bayesian rule in a similar way as
in the DNN-HMM acoustic model for speech recognition [9].

2.1. HMM based Story Segmentation

HMM is a generative model for sequence data and has been
applied to the text segmentation task [14]. An HMM con-
tains a set of N states, each representing a topic. The transi-
tion between the states can be modeled by a N × N matrix,
which can be learnt from segmented and labeled training data.
Each state is associated with an emission probability distribu-
tion function (PDF) that models the n-gram word distribution
for the topic represented by the state. For example, in [15], a
topic-dependent unigram language model is used as the emis-
sion probability of each HMM state.

Given a sequence of words and the trained HMM, we can
infer the topic sequence by solving the following optimization
problem:

ẑ = argmax
z

p(z|w; θ) (1)

where w = [w1, ..., wT ] is a sequence of T words observed,
z = [z1, ..., zT ] is the topic sequence to be inferred, and θ rep-
resent the HMM parameters including the transition probabil-
ities and the state emission PDFs. Here we assume that each
word is an observation. By applying the Bayesian’s rule, the
above optimization problem is equivalent to:

ẑ = argmax
z

p(w|z; θ)p(z)/p(w) (2)

= argmax
z

p(w|z; θ)p(z) (3)

where p(w) does not depend on z and hence ignored in the op-
timization problem. p(z) is the transition probabilities between
states

p(z) = p(z1)

T∏
t=2

p(zt|zt−1) (4)

where p(zt|zt−1) is the transition probability from state zt−1

to zt. The words in neighboring time steps are assumed to be

Figure 2: Predicted topic posterior probabilities versus true
topic label. Darker means higher probability. (a) is the top-
ic posteriors of words predicted by DNN with BOW input. (b) is
the true topic class label of the words. The data used to generate
the plot are stories taken from TDT2 corpus.

independent given the state sequence, hence

p(w|z) =
T∏

t=1

p(wt|zt) (5)

where p(wt|zt) is the conditional distribution of the word given
the topic, i.e. topic-dependent LM. Note that the formulation
in (5) only allows unigram topic LM to be used. To use higher
order ngram for topic LM, we can use a fixed window of words
[35] or sentence [15] as the basic observation unit.

The topic-dependent LM and state transition probabilities
can be trained from a set of text documents, with story boundary
and topic label annotated. If the topic label is not available, we
can cluster the segmented stories into a set of topics. With these
models and the definition of the optimization problem from (3)
to (5), we can use the Viterbi algorithm [36] to find the optimal
topic sequence for test data efficiently.

The HMM approach to story segmentation is a generative
approach, i.e. it models the generation process of the stories
and words, and reverse the generative process at test phase to
infer the topic sequence. Motivated by the recent success of
DNN-HMM approach in ASR, we propose to use a discrimi-
native approach for the story segmentation task. Specifically,
we propose to replace the topic-dependent LM with a DNN that
predicts the posterior probabilities of the topics directly given a
window of observed words.

2.2. DNN based Topic Posterior Prediction

A DNN is actually a multi-layer perception (MLP), i.e., a feed-
forward neural network model that maps sets of input data onto
a set of outputs. It can be considered as a hierarchical feature
learner with a nonlinear transformation refining the input repre-
sentation to a better one, which is topic posterior in our case.

As different topics usually have different word distribution-
s, the input of DNN at word wt is the BOW computed from the
local context of the current word, defined by

xt =
1

T ′ + 1

T ′/2∑
τ=−T ′/2

w̃t−τ (6)

where w̃t is the 1-hot vector representation of the word wt, and
T ′ + 1 is the context window size. At the beginning and end-
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ing of the input word sequence, we won’t be able to get the full
context, and the normalization term T ′ + 1 is replaced by the
actual number of words used in the sum. In this way, we nor-
malize xt independent of its position in the input sequence. The
BOW vector xt is sparse and has a dimension of |V |, i.e. the
size of the vocabulary. It captures the unigram statistics around
the current word wt, and hence contains information to predict
the topic class for wt.

The BOW feature vector is nonlinearly transformed by the
DNN to generate the topic posteriors. The hidden layers of the
DNN produces their output as follows:

hl = fl(Wlhl−1 + bl) (7)

where hl, fl, Wl, and bl are the output, activation function,
transform matrix, and bias vector at layer l, respectively. In
this study, we use the sigmoid activation function for hidden
layers. Note that the input of the first hidden layer h0 = xt.
The posterior probability of the ith topics given the input is

p(zt = i|xt) =
ehL(i)∑J
j=1 e

hL(j)
(8)

where hL(i) is the ith element of the last hidden layer’s output
vector, and J is the total number of topic classes. In equation
(8), we used the softmax activation function.

From (5), what we need for Viterbi decoding is the like-
lihood p(wt|z = i). We first assume that p(zt = i|wt) =
p(zt = i|xt), i.e. the topic posterior given a word is the same
as the topic posterior given the word’s local context. Then, the
likelihood can be obtained from the Bayesian rule

p(wt|zt = i) =
p(zt = i|xt)p(wt)

p(zt = i)
(9)

where p(wt) can be ignored in the decoding as it does not de-
pend on the topic class. p(zt = i) is the prior probability of the
topic class i. Note that the way of converting class posteriors to
observation likelihood in equation (9) has been used widely in
hybrid DNN-HMM ASR systems [9, 37].

Fig. 2 shows the quality of the DNN predicted topic poste-
rior and compare it against true topic label. Horizontal axis is
the index of words while vertical axis is the topic class. From
the figure, the predicted topic posterior follows the true topic
label reasonably well. This shows that it is suitable to use BOW
features of a word to predict its topic class.

2.3. Generating Training Class Label Using Clustering

In order to get topic labels of words for the training of DNN,
we cluster training text segments into a predefined number of
clusters using the CLUTO [38] tool. The clustering objective is
to minimize the inter-cluster similarity and maximize the intra-
cluster similarity.

The unigram probabilities of words are usually different in
different clusters (topics). For example, there is high probabil-
ity of appearance of words like football, basketball, tennis in
a sports news, while bank, stock market and bond appears fre-
quently in economic news. Fig. 3 shows the distribution of most
frequently appeared words in some selected clusters. From this
figure, we can observe that the most frequent words used usu-
ally depends on the topic. Such information can be captured by
the BOW feature vector used in this study and used to predict
the topic by using a DNN.
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Figure 3: The distribution of most frequent words in 10 clus-
ters. X-axis is the index of frequent words in the 10 clusters,
while y-axis is the index of clusters. Darker color means higher
probability of occurrence.

3. Experiments
3.1. Experimental Setup

We carried out experiments on Topic Detection and Tracking (T-
DT2) [5] corpus, which contains 2,280 English broadcast news
programs. Our testing set includes 240 programs, chosen as
subset of the whole corpus, with the remaining 1,800 programs
as training set and 240 programs as development set. All texts
were preprocessed by a Porter stemmer and stop words were re-
moved. The size of vocabulary is 57,817. In the test set, each
of the out-of-vocabulary words is replaced by its prior word.
In the unsupervised clustering process, a k-way clustering so-
lution was used and the distance metric used in CLUTO toolkit
was cosine.

We trained a DNN with 2 hidden layers, each of which con-
tains 256 nodes. We used 60 words as context to construct BOW
vector. A diagonal transform and bias vector is used to make
the BOW feature vectors have zero mean and unit variance for
the training corpus (global mean and variance normalization).
The same transform and bias are also used to normalize the test
BOW feature vectors. Sentence boundary is used to construct
sentence unit for the decoding process. According to [15], for
each HMM state, the probability of staying at the state is 0.8
(tuned on the development set), while the remaining 0.2 proba-
bility is evenly assigned to the switching from the current state
to other states.

Performance was evaluated by precision, recall and F1-
measure with a tolerance window of 50 words according to the
TDT2 standard [5]. In this approach the discovered boundaries
of the topic segments were compared to the manually segment-
ed reference boundaries. Recall is the fraction of reference
boundaries that are retrieved. Precision is the fraction of de-
clared boundaries that coincide with reference boundaries. A
single numeric score is referred to as the F1-measure and de-
fined as:

F1-measure = 2× Recall × Precision

Recall + Precision
(10)

3.2. Results of the DNN-HMM approach

We first investigate the effect of the number of clusters in the
DNN-HMM approach. Table 1 shows the F1-measure with d-
ifferent numbers of clusters. We observe that the F1-measures
are above 0.7 for all numbers of clusters tested, from 50 to 200.
We got the highest F1-measure when the number of clusters is
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Figure 4: Sentence similarity matrix dotplots for an episode of broadcast news program from the TDT2 corpus, in which the similarities
are calculated based on (a) TF-IDF, (b) LDA and (c) DNN Posteriors,respectively. x-axis and y-axis are index of sentences. High
similarity values are represented by dark pixels. The vertical lines indicate the real topic boundaries.

Table 1: F1-measure with different numbers of clusters.
Cluster 50 100 150 170 200
F1-measure 0.719 0.725 0.742 0.765 0.730

Table 2: F1-measure with different size of context.
Size 40 50 60 70 80
F1-measure 0.753 0.761 0.765 0.758 0.752

170. The results show that the proposed method is quite stable
at different numbers of clusters. Table 2 shows the relationship
between the size of context and F1-measure. We got highest
F1-measure when the size of context is 60. The results show
that the F1-measure is not very sensitive to the size of context.

We compared the proposed DNN-HMM approach with the
traditional HMM approach in which the emission probability is
calculated from topic-dependant unigram LMs [15] in Table 3.
The F1 measure is improved by 20% from 0.637 to 0.765 by the
proposed DNN-HMM approach (the differences are significant
at p < 0.01 [39]).

3.3. Different representations in TextTiling and DP

We applied the topic posteriors generated by the DNN to Text-
Tiling and DP approaches and compared it with tf-idf and LDA
representation. Fig. 4 illustrates the sentence similarity matrix
dot plots for an episode of broadcast news program, in which
the similarity is calculated based on tf-idf, LDA and the top-
ic posteriors, respectively. The red line indicates the real topic
boundaries. We can see that all dotplot figures contain dark
square regions along the diagonal delimited by topic bound-
aries. These regions indicate cohesive topic segments with high
sentence similarities. We can see more salient blocks on the
posterior based dot plot on figure (c) generated by DNN , which
indicates more promise in topic segmentation result.

We use DP and TextTiling approaches to segment broadcast
news stories with different representations. Cosine distance is
used to calculate similarity between sentences in the TextTiling
approach. Table 4 shows the segmentation results of DP and
TextTiling approach. The systems with DNN generated topic
posteriors get the highest F1-measure (significant at p < 0.05),
which suggests that the posteriors contain more discriminative
topic information.

3.4. Comparison with the state-of-the-art methods

We also compare the proposed DNN-HMM method with the
state-of-the-art methods in Table 5. From the results, we ob-
serve that the proposed DNN-HMM approach obtains the best
result. Please note that all results are reported using the same
TDT2 data configurations.

Table 3: F1-measure with different ways to generate the emis-
sion probabilities of the HMM states.

Approach F1-measure
Topic-dependent n-gram LM [15] 0.637
DNN + BOW (this study) 0.765

Table 4: F1-measure of TextTiling and DP approaches on dif-
ferent representations

Representation TextTiling DP
tf-idf 0.553 0.421
LDA 0.574 0.682
Topic posteriors by DNN 0.663 0.726

Table 5: F1-measure with different features and approaches
Approach F1-measure
TextTiling [4] 0.553
PLSA-DP-CE [25] 0.682
BayesSeg [26] 0.710
DD-CRP [27] 0.730
DNN-TextTiling 0.663
DNN-HMM 0.765

4. Conclusions and Future Work
This paper proposes a DNN-HMM approach for story segmen-
tation in broadcast news. In our approach, we use a DNN to
predict topic posterior from BOW feature vector and a HMM
to model the transition between topics. Then a Viterbi search
is used for decoding the word sequence into topic sequence,
from which the story boundary can be identified when the topic
changes. As the topic posteriors contains discriminative topic
information, we also apply it to DP and TextTiling approaches.
Experimental results on the TDT2 task shows that the proposed
DNN-HMM approach has achieved state-of-art performance. In
addition, the DNN predicted topic posteriors can be used as fea-
tures in DP and TextTiling methods to improve story segmen-
tation performance compared to previous features such as tf-idf
and LDA derived features. Future work goes in two direction-
s, first, we plan to include more information such as prosodic
and ngram as input to train the DNN. Second, we plan to test
different neural networks, e.g., convolution neural networks (C-
NN) [40] and recurrent neural networks (RNN) [41] in story
segmentation.
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