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Abstract

A method based on the production mechanism of the vocals
in the composite vocal polyphonic music signal is proposed
for vocal melody extraction. In the proposed method, initially
the non-pitched percussive source is suppressed by observing
its wideband spectral characteristics to emphasise the harmonic
content in the mixture signal. Further, the harmonic enhanced
signal is segmented into vocal and non-vocal regions by thresh-
olding the salience energy contour. The vocal regions are fur-
ther divided into vocal note like regions by their spectral tran-
sition cues in the frequency domain. The melody contour in
each vocal note is extracted by detecting the locations of instant
of significant excitation by passing it through adaptive zero fre-
quency filtering (ZFF) in the time domain. The experimental
results showed that the proposed method is indeed comparable
to the state-of-the-art saliency based melody extraction method.
Index Terms: Predominant Melody, Zero Frequency Filter,
Note Onsets, Vocal Notes, Polyphonic Music, Vocals and Non-
Vocals.

1. Introduction
Predominant melody is the single fundamental frequency (F0)
contour of the dominant instrument in the polyphonic music sig-
nal [1]. The dominant instrument can be either a human singing
voice or any lead instrument. Since the majority of the available
polyphonic music signals contain vocals as dominant source,
vocal melody extraction is the goal of this paper. The extracted
melody can be used in many potential applications [2], such
as query by humming [3], singer identification [4], automatic
music transcription [5], music genre classification [6], domi-
nant instrument identification, cover song detection, music de-
soloing [7] and so on.

We can broadly classify the available melody extraction
methods into two categories viz. (1) Signal transformation
(salience) and (2) Source separation based methods. Signal
transformation is a separation less method in which mostly
polyphonic music signal is transformed into spectral domain
by short-time-Fourier-transform (STFT). Followed by estimat-
ing the pitch saliency function by summation of harmonic par-
tials. Finally, melody contour tracking algorithms are applied
on the candidate pitches obtained from the salience function.
Salience based methods mostly differ in the following aspects
: pitch saliency function computation, salience peak estima-
tion and melody contour creation from the candidate pitches
[8, 9, 10, 11, 12]. On the other hand, source responsible for
melody in the polyphonic music signal is separated from the
rest of mixture signal in separation based methods. Melody
is extracted from the separated source signal by a monophonic
pitch detection algorithm [13, 14, 15, 16]. A detailed review on

available salience, source separation and other melody extrac-
tion methods can be found in [2].

In this paper, the digital source-filtering model [17] of the
speech production mechanism is adopted for the melody ex-
traction from the music signal. Though the speech and vocal
polyphonic music are entirely different signals, still they share
the common production mechanism. That is, the major source
of excitation is the impulse-like excitation to the time varying
vocal-tract system in speech and vocals in vocal polyphonic mu-
sic signals. The impulse excitation to the system results in dis-
continuity in the frequency of the output signal produced. The
discontinuity due to impulse is reflected across all frequencies
including the zero frequency. Further, the frequency near zero
Hz should essentially contains the information about the impul-
sive excitation. Hence, in this work, the zero frequency filter-
ing [18] method is adopted for extracting the instants of signifi-
cant excitation or glottal closure instants (GCIs) from the vocal
music signal. Originally, ZFF is proposed to extract the GCIs
by passing the monophonic speech signal through a cascade of
two zero frequency resonators (ZFRs). Followed by designing a
mean subtraction filter whose length in samples equal to the av-
erage pitch period estimated from the autocorrelation function
to extract the GCIs by removing the trend in the output of the
ZFRs. Further, the instantaneous F0 is computed as the recip-
rocal of the distance between the consecutive GCIs. The ZFF
method as it is cannot be applied for the polyphonic music sig-
nals because of the following reasons: (i) it consists of many
pitch and non-pitched sources, (ii) the melody of the singer
varies significantly from one note to the other, (iii) the source
of excitation of non-pitched percussive instrument is impulsive
like, (iv) unlike speech, the coupling of the source and the fil-
ter in vocals is very strong. Hence, in this method, initially the
percussive component in the polyphonic signal is suppressed by
observing the wideband spectral characteristics in the frequency
domain. The percussion suppressed signal is segmented into
vocal and non-vocal regions by thresholding the harmonic par-
tials energy contour. Further, the vocal regions are divided into
vocal note like regions by finding their onsets in the frequency
domain. Finally, each note is adaptively zero frequency filtered
after suppressing the strong source-system coupling and design-
ing a narrow bandpass filter with resonance frequency obtained
from the Two-way-miss-match (TWM) algorithm to construct
the melody contour.

2. Source-Filter Model Based Melody
Extraction Method

The sequence of steps present in the proposed melody extrac-
tion method is illustrated in the form of a block diagram as
shown in Fig. 1. The significance of each block is briefly ex-
plained in subsequent sections.
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Figure 1: Block diagram illustration of the proposed melody
extraction method.

2.1. ZFF as a Source-Filter Separator
A method to extract F0 from monaural speech by separating
the signal containing the excitation source and the filter infor-
mation is proposed in [19]. The basis of the proposed method
is, the discontinuity due to impulse like excitation effects all
frequencies equally, including the frequencies near zero Hz.
Hence, the output of the ZFR essentially contains the infor-
mation about the discontinuities due to impulse-like excitation.
In order to separate the signal containing the excitation infor-
mation, (i) the speech signal is passed twice through the ZFR
given by y0[n] =

∑4
k=1 aky0[n − k] + x[n], where a1 = 4,

a2 = −6, a3 = 4, and a4 = −1, (ii) to find the overriding
epoch locations, the trend in each sample of the signal y0[n]
is removed by subtracting the mean computed over a window
length equal to the average pitch period of the speaker given by
y[n] = y0[n] − 1

2N+1

∑N
m=−N y0[n +m], (iii) the GCIs are

obtained as the positive zero crossings of the ZFF signal (y[n]),
and (iv) the instantaneous pitch contour is computed as the re-
ciprocal of the difference between successive GCIs.

Time and frequency domain interpretations of the ZFF is il-
lustrated in Fig. 2. A segment of synthetic vowel /a/, the output
of the cascaded ZFR and the ZFF signal are shown in Fig. 2(a),
(b) and (c) respectively. The corresponding spectrum of vowel,
magnitude response of cascaded ZFR and ZFF signal are shown
in Fig. 2(d), (e) and (f) respectively. From the log-magnitude
frequency-response of ZFR in Fig. 2(e), we can observe that the
ZFR has mostly de-emphasises spectral information related to
vocal tract and very significant emphasis near the zero Hz in
terms of magnitude. Also, from the spectrum of ZFF signal in
Fig. 2(f) we can observe a strong peak around the region of pitch
frequency. This effect can be attributed to the narrow bandpass
(resonator-like) filtering nature of mean subtraction filter (MSF)
on the ZFR output containing the overriding information about
GCIs. The mean subtracted signal in Fig. 2(c) is essentially a
single low frequency signal, whose positive zero crossings cor-
responds to the instants of glottal closures. The GCI locations
do not deviate significantly as long as the obtained average pitch
period is within 1-2 pitch period of the speaker for MSF, which
we call it as invariance property of ZFF.
2.2. Percussion Suppression for Harmonic Enhancement

The harmonic content in the vocal polyphonic music signal is
enhanced by suppressing the wideband spectral energy of the
non-pitched percussive instrument (NPPI). The NPPI not only
interfere with the harmonic partials of the pitched instruments,
but also frequency content near zero Hz. Hence, the wide-
band spectral energy is suppressed by computing the frequency
change in the STFT of the polyphonic music signal. The poly-
phonic music signal is transformed to frequency domain by
STFT of 40ms frame size and 3ms frame shift. A relatively
small frame shift of 3ms is chosen to retain the time resolution
of rapidly decaying percussive source along the time. For each

Figure 2: Illustration of ZFF as a source-filter separator. The
time domain waveforms of a segment of vowel, cascaded ZFR
output, and the ZFF signal are shown in (a), (b) and (c) re-
spectively. The corresponding spectrum of vowel, magnitude
response of cascaded ZFR and ZFF signal are shown in (d), (e)
and (f) respectively. The GCIs are shown as downward arrows
in (a) and (c).

signal frame, the STFT is computed as

F (l, k) =

N−1∑
n=0

x(n)w(n)e−j2πkn/N (1)

where F (l, k) is the lth frame, kth frequency complex spectral
frame, x(n) is the music signal, w(n) is the hamming window,
N = 2048 is the number of frequency bins. The wideband spec-
tral energy is suppressed by taking the frequency change in the
magnitude spectrum of F (l, k) by

Xfc(l, k) = X(l, k)−X(l, k − 1) (2)

where X(l, k) is the magnitude spectrum of F (l, k). The har-
monic content of the spectrum is retained and enhanced by

Xpow(l, k) = Xfc(l, k)
2|Xfc(l,k)>0 (3)

A binary mask is created to suppress the percussion from each
spectral frame by

Xmask(l, k) = Xpow(l, k) > (argmax
(l,k)

(Xpow(l, k)) ∗ δ/100

(4)
where δ is the parameter decides the amount of harmonic par-
tials needs to be retained. An optimal value of 0.1 is chosen
for δ to retain the maximum amount of harmonic partials. The
magnitude spectrum Xpow(l, k) is smoothed with a five point
median filter to remove any isolated peaks in spectrum given by

Xmed(l, k) = medfilt(Xpow(n− l : n+ l, k)) (5)

The binary mask Xmask(l, k) is multiplied with the magnitude
Xmed(l, k) and phase P (l, k) ( phase of Eq. 1 ) spectrum to get
the percussion suppressed magnitude and phase spectrum given
by

Xmod(l, k) = Xmed(l, k) ∗Xmask(l, k) (6)

Pmod(l, k) = P (l, k) ∗Xmask(l, k) (7)

The harmonic enhanced polyphonic signal is obtained by in-
verse STFT given by

y[n] = 1/N

N−1∑
n=0

Xmod(l, k)e
−jPmod(l,k)ej2πkn/N (8)

An illustration of percussion suppression is shown in Fig. 3.
Fig. 3(a) is the spectrogram of the polyphonic music signal con-
sists of both harmonic and wideband percussion source (shown
in ellipses). Figs. 3(b) and (c) shows the percussion suppressed
and median filtered spectrograms. From Fig. 3(c) we can ob-
serve that the wideband percussion is mostly suppressed and
harmonic component in the spectrogram is significantly en-
hanced.
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Figure 3: Illustration of the percussion suppression of poly-
phonic music signal. (a) Polyphonic music signal containing
percussive and harmonic sources, (b) percussion suppressed
magnitude spectrogram, (c) median filtered and hence har-
monic enhanced spectrogram.

2.3. Vocal/Non-Vocal Detection

The vocal and non-vocal (V/NV) refers to the vocal melody and
non-melody regions in the polyphonic music signal. The domi-
nant harmonic partials in the percussion suppressed median fil-
tered magnitude spectrum Xmod(l, k) in the frequency range
100 Hz - 4 KHz (vocal activity ceases above 4 KHz) is obtained
by comparing with the maximum partial peak. The partials with
less than 1/10 of the maximum peak is filtered out from each
frame. For all frames, the mean µdp and standard deviation σdp
of all dominant partial is computed. The partials with magni-
tude below µdp - δdp σdp are removed from all frames in order
to give emphasis to the dominant partials. The energy of the
remaining dominant partials in each frame is computed as

E[l] =

P∑
k

Xrem(l, k)2 (9)

Where Xrem(l, k) contains the remaining dominant harmonic
partials. The energy contour E[l] is passed through the
Savitzky-Golay filter [20] of order 3 and window size 31 frames
to obtain the smoothed envelope. An excerpt of polyphonic
music signal, smoothed energy contour with overlaid detected
vocal boundary markers is shown in Fig. 4. The mean µE
and standard deviation σE of the smoothed energy contour is
computed. The regions of energy contour is labelled as vocal
for which energy is greater than the statistical measure µE -
δE ∗ σE . Where δE is the threshold deviation parameter, an
optimum value of 0.95 is chosen to reduce miss rates.

2.4. Vocal Note Onset Detection

The vocal melody varies significantly from one note to the other.
Hence, a single MSF is not sufficient to remove the trend in ZFR
output of the entire music signal. Therefore, the vocal regions
are further divided into vocal note like regions by detecting their
onsets in the median filtered magnitude spectrogram. An onset
can be defined as an event in a music signal where the signal
properties such as short time energy, spectral magnitude, phase
spectrum etc., shows significant changes [21, 22, 23, 24, 25].
The vocal onsets are manifested as both soft and hard onsets in
the lower frequency range. Hence, the onsets are detected as
spectral changes in the vocal frequency range spanning 100 Hz-
4 KHz. A method similar to [26] is adopted to determine the
spectral changes by finding the Euclidean distance between the
spectral frames given by

Edm(l) =
∑

k;Ex(l,k)>0

Ex(l, k)
2 (10)

where
Ex(l, k) = Xmod(l, k)−Xmod(l − 1, k) (11)

Figure 4: Illustration of the polyphonic music signal with the
smoothed harmonic partial energy contour and overlaid vocal
segment boundary markers.

The distance measure is normalized to obtain the onset detec-
tion function whose peaks correspond to the onsets given by

Edmn(l) =
Edm(l)∑f2

k=f1Xmod(l − 1, k)2
(12)

The onset detection function Edmn(l) contains peaks corre-
sponding to vocal notes as well other pitched percussive in-
struments (bass and snare onsets). Resulting in segmenting a
note into several sound units. In order to suppress the other
peaks, the spectral change along time in the same vocal fre-
quency range is computed on the frequency differenced spectro-
gram as follows. The median filtered spectrogram Xmod(l, k)
is exponentially weighted to emphasize the low frequency on-
sets such as the bass and snare.

Xw(l, k) =

f2∑
k=f1

1/k ∗Xmod(l, k) (13)

The weighted frequency difference is taken along the frequency
axis given by

Xfd(l, k) = Xw(l, k)−Xw(l, k − 1) (14)

The spectral change of Xfd(l, k) along the time is taken to re-
move the harmonics and hence to retain the pitched percussive
onsets given by

Xsc(l, k) = Xfd(l, k)−Xfd(l − 1, k) (15)

The normalized energy of the positive spectral changes for each
frame along the time is computed to obtain the onset detection
function given by

Xdf (l) =

∑
k;Efd(l,k)>0Xfd(l, k)

2∑f2
k=f1Xw(l − 1, k)2

(16)

The location of onsets in the onset detection function of Eqs. 12
and 16 are obtained by peak picking heuristics as follows: The
lth frame is considered as onset if the onset detection func-
tion fulfils the following conditions (here, y(l) can be either
Edmn(l) or Xdf (l))

y(l) = max(y(l − w)) (17)
y(l) >= mean(y(l − w : l + w)) + δ (18)

l − llastonset > w (19)

The optimal values for w and δ are chosen as 3 and 0.05 re-
spectively. The location of final onsets detected from 16 are
removed from the set containing the onset locations of Eqs. 12
which are at a distance of four frames to mostly retain the vo-
cal onsets. The process of vocal note onset detection is illus-
trated in Fig. 5. Fig. 5(a) shows the spectrogram containing the
pitched percussive note onsets and its onset detection function
in Fig. 5(b). The spectral change based onset detection function
and the final vocal note onsets are shown in Fig. 5(c) and (d)
respectively.

3311



Figure 5: Illustration of onset detection functions of a music ex-
cerpt. (a) Spectrogram showing the signature of pitched percus-
sive regions obtained from frequency differenced spectrogram
(b) onset detection function of (a), (c) spectral change based
onset detection function, and (d) spectrogram and the overlaid
final vocal onsets.

2.5. Resonance Frequency Detection and Adaptive Filter-
ing

The melody contour in each vocal note is obtained by extract-
ing the GCIs by adaptive zero frequency filtering. In order to
remove the trend in the output of the ZFR of each vocal note,
an average pitch period or center of frequency of the respective
vocal note for designing the narrow bandpass filter or MSF is
obtained by TWM algorithm [27]. TWM error function is de-
signed to find the F0 of the given signal by minimizing the error
between the measured partial peaks and the predicted harmonics
in each STFT frame. For each frame, the measured partial peaks
are obtained from the percussion suppressed and median filtered
spectrogram Xmod(l, k) by sinusoidal detection [28]. The si-
nusoids in each frame is obtained by measuring a mean squared
error difference between measured spectral peak’s shape and
the spectrum of the analysis window main lobe. The probable
(predicted) F0 candidates for TWM algorithm are obtained as
the sub-multiples of measured sinusoids. The F0 search range
is limited to 50 Hz-1 KHz assuming that the vocal melody will
lie in this range. The representative pitch period of vocal note
is obtained as the reciprocal of the median of F0 candidates for
which the TWM error is minimum.

In order to strongly de-emphasize the system resonances
due to vocal tract and instruments, and hence to emphasize the
source information. Each vocal note of the percussion sup-
pressed polyphonic music signal y[n] of Eq. 8 is passed through
the cascade of three ZFRs given by

Y [n] =

6∑
k=1

akY [n− k] + y[n] (20)

where, a1 = 6, a2 = −15, a3 = 20, a4 = −15, a5 =
6, anda6 = −1. The trend in the cascaded ZFR output is re-
moved by filtering the signal twice through the mean subtraction
filter (as discussed in subsection 2.1) designed with the center of
frequency computed from TWM algorithm for respective vocal
note. Finally, the GCIs of the trend removed signal i.e., the ZFF
signal is obtained as the negative to positive zero crossings. The
melody is computed as the reciprocal of the difference between
successive GCIs.

3. Evaluation and Discussion
The performance of the proposed melody extraction method is
evaluated on three openly available datasets. The datasets in-
cludes music excerpts and the corresponding melody ground

truth in the form of time-frequency pairs. ADC2004,
Mirex05TrainFiles and MIR-1K datasets are considered for
evaluation, consisting of 20, 13 and a subset of 400 excerpts
respectively. Each excerpt had a duration between 7 - 40 sec
in the genres of pop, jazz, opera, rock, solo classical piano
sung by both male and female singers. The four global mea-
sures provided by MIREX 2005 [1] are used for evaluating the
proposed method : Voicing Recall Rate (VR), Voicing False
Alarm Rate (VFA), Raw Pitch Accuracy (RP) and Overall
Accuracy (OA). The performance of the proposed method is
compared with widely used and openly available saliency based
melody extraction method Melodia1 [12] as shown in Table 1.
From Table 1 we can observe that the performance of the pro-
posed method is indeed comparable with that of Melodia for the
dataset considered.

The overall increase in the performance of the pro-
posed method is observed for the datasets ADC2004 and
Mirex05TrainSet. The increase in performance is mainly due
to the percussion suppression resulted in harmonic rich music
excerpts benefited by the TWM algorithm for identifying the
resonance frequency within the invariance range at each vocal
note. And hence, ZFF in succeeded in extracting the correct
GCIs. The overall increase in VFA is observed for all datasets
this is mainly due to occasionally misclassification of vocals
as non-vocals due to sensitivity of the threshold in the strong
pitched percussive regions. Overall decrease in the performance
of the proposed method is observed compared to the Melodia
for a slightly larger dataset MIR-1K mostly due to the tracking
of the representative resonance frequency by the TWM algo-
rithm beyond the invariance range of MSF. In future, we would
like to address the sensitivity of the threshold for V/NV classi-
fication by adaptive thresholding techniques. A modified TWM
algorithm for extracting the resonance frequency within the in-
variance range by constraining error computation based on the
dominant harmonic partials. Also, the proposed method needs
to be evaluated on the larger dataset covering various genre and
styles other than the considered dataset.

Table 1: Performance comparison of proposed (P) and Melodia
(M).

Dataset VR VFA RP OA
P M P M P M P M

ADC2004 0.83 0.79 0.22 0.21 0.80 0.75 0.76 0.72
Mirex05TrainSet 0.82 0.77 0.25 0.23 0.75 0.69 0.74 0.67
MIR-1K 0.81 0.84 0.24 0.17 0.79 0.85 0.78 0.81

4. Summary and Conclusions
A predominant vocal melody extraction method based on GCIs
of the vocal source signal is proposed. The influence of the non-
pitched percussive source on the mixture signal is suppressed by
its wideband spectral characteristics to emphasise the harmonic
content in the polyphonic signal. The harmonic enhanced signal
is further segmented into vocal and non-vocal regions by thresh-
olding the partial harmonic energy contour. The vocal regions
are further divided into vocal note like regions by their spectral
transition cues in the frequency domain. The melody contour
in each vocal note is extracted by detecting GCIs by passing
it through an adaptive zero frequency filtering (ZFF) in time
domain. The experimental results showed that the proposed
method is indeed comparable to the state-of-the-art saliency
based melody extraction method for the datasets considered.

1http://www.mtg.upf.edu/technologies/melodia.
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