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Abstract
A proof of concept system is developed to provide a broad as-
sessment of speech development issues in children. It has been
designed to enable non-experts to complete an initial screening
of children’s speech with the aim of reducing the workload on
Speech Language Pathology services. The system was com-
posed of an acoustic model trained by neural networks with
split temporal context features and a constrained HMM encoded
with the knowledge of Speech Language Pathologists. Results
demonstrated the system was able to improve PER by 33%
compared with standard HMM decoders, with a minimum PER
of 19.03% achieved. Identification of Phonological Error Pat-
terns with up to 94% accuracy was achieved despite utilizing
only a small corpus of disordered speech from Australian chil-
dren. These results indicate the proposed system is viable and
the direction of further development are outlined in the paper.
Index Terms: Automated Speech Recognition, Phonological
Error Patterns, Speech Therapy, Speech Assessment Tools

1. Introduction
In 2011 the ratio of Speech and Language Pathologists (SLPs)
to the general population in Australia was just over 1:5000
[1, 2]. When compared to the one in twenty Australian chil-
dren presenting to school with a speech disorder [3, 4], this ra-
tio highlights a vast disparity between supply and demand. This
issue is further exacerbated in the public sector, where it has
been reported that 25% of children wait more than 6 months and
18% wait more than 1 year to access an initial assessment [5],
with wealthier families more likely to access these services [6].
These factors significantly impact a familys ability to optimize
their childs speech and language development. Better service
allocation to the most needy could be achieved if clinical tech-
nologies were developed, using Automatic Speech Recognition
(ASR), to automate initial assessment. Furthermore, such tech-
nologies would enable more efficient assessment in countries
without SLP shortages and provide significant benefit to coun-
tries, such as China, with more severe skill shortages [7].

Previous work in clinical applications of ASR have focused
on particular disorders, such as childhood apraxia of speech
(CAS) [8]. The aim of this system is to facilitate remote de-
livery and the monitoring of therapy by skilled SLPs, achieved
through modules which detect voice activity and verify lexical

stress and pronunciation. Automated systems have also been
used to detect dysarthria [9], a motor speech disorder, by iden-
tifying the acoustic landmarks where dysarthria affected speech
differs from normal speech. Additionally, systems have been
developed to detect vocal fold disorders that are symptomatic of
particular diseases i.e. throat cancer [10, 11, 12]. Features rep-
resenting pitch variation and pitch amplitude are used to detect
the severity of voice pathologies using supervised classifiers.

ASR models have also been used to provide feedback to
patients with speech development issues in therapy applica-
tions [13, 14]. The pronunciation quality of test phonemes
are measured relative to the posterior probabilities produced
by the acoustic models. Whilst suitable for therapy, these ap-
proaches are not informative enough for a screening applica-
tions which not only need to identify when a phoneme is mis-
pronounced, but what phonological error pattern (PEP) has oc-
curred (whether phonemes are substituted, inserted or deleted
from the target word). Studies show that the error type, not
just the presence of an error, is an important diagnostic crite-
ria for prognosticating about later speech and literacy outcomes
[15, 16].

Existing work, with its focus on SLP monitoring and inter-
vention for specific conditions, has not addressed the need for
a broad initial assessment tool. To this end, we have developed
a proof of concept system to identify and evaluate the type of
PEPs in children’s speech. Our system differs from existing
work in that it aims at broad assessment not diagnosis of a spe-
cific condition. Through integrating expert SLP knowledge, our
system accommodates usage by non-experts to alleviate the bur-
den on SLPs. The proposed system aims to triage children for
professional SLP assessment based on whether their PEP are
low-risk (not present or age-appropriate), moderate risk (typi-
cal but delayed more than 6 months ) or high risk (atypical).
Furthermore, through making available the more detailed out-
puts of the system to trained SLPs, pre-appointment assessment
could take place to streamline the service delivery.

As standard ASR approaches utilize HMM decoders trained
on large corpora, one of the challenges in developing such a
system has been the scarcity of speech data that is available to
represent the target population of Australian children. Conse-
quently we have developed a constrained HMM decoder, based
on expert SLP knowledge, to exploit a small, but representative,
speech corpus of Australian children with Disordered Speech.
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This paper outlines the architecture of the developed proof
of concept system in Section 2. Section 3 presents the results
of experiments performed on this system with the conclusions
drawn from which are summarized in Section 4.

2. Architecture and Approach
Figure 1 presents the proposed three stage architecture. Input
speech is elicited from children utilizing a picture naming task
for a set of specific, diagnostically relevant target words. These
are based on a commonly used SLP screening protocol from the
Diagnostic Evaluation of Articulation and Phonology (DEAP)
test [17]. Using this validated protocol as a basis ensures not
only clinical relevance but by significantly restricting the dic-
tionary of target words, facilitates the use of knowledge-driven
methods.

2.1. Hierarchical Neural Network (HNN)

The acoustic models used in our system are trained by a HNN
with split temporal context features. These models were devel-
oped for the phoneme recognition system outlined in [18, 19]
and were used given its superior performance to Gaussian Mix-
ture Models for small data sets and for data acquired in low sig-
nal to noise conditions [19]. The speech signal is split into 25ms
frames with 15ms overlap and 13 Mel Frequency Cepstral Co-
efficients (MFCC) are extracted from each frame. Longer tem-
poral patterns of the MFCC vectors are then modeled for 310ms
(31 feature vectors) and split into left (the feature vectors from 0
- 15) and right contexts (feature vectors 15 - 30). The right and
left contexts are then processed independently; a half hamming
window is applied to emphasize the middle vectors then the Dis-
crete Cosine Transform is used to reduce the dimensionality of
each context down to 11 coefficients. Both right and left con-
texts become the input vectors to separate three layer perceptron
classifiers. The output vectors of the two classifiers (posterior
probabilities) are concatenated and the log of these probabilities
are fed as an input to a third “merged” three layer perceptron
classifier. The “merged” classifier maps the posteriors of the
left and right temporal contexts to the phoneme classes produc-
ing a new set of posterior probabilities that are used to decode
the phoneme sequence of each word.

The three neural network classifiers used in the HNN model
were trained with classical back propagation. There were 500
neurons in their hidden layer and softmax non-linearity was
used to produce the posterior probabilities in the output layer.

2.2. Constrained Hidden Markov Model (HMM) Decoder

The second stage consists of a speaker-independent constrained
Hidden Markov Model (HMM) Decoder which utilizes the
HNN output as its emission probabilities. This decoder builds
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Figure 2: A state transition in the constrained HMM decoder

on the lattice approach in [20] but not only uses generalized SLP
knowledge of common PEPs, but integrates the most likely er-
ror patterns for each of the given target words. Phoneme dictio-
naries were created in consultation with expert SLPS for each
target word. These dictionaries consist of the target phonemes
followed by expected substitutions for each phoneme position.
For example, for the target word ‘teeth’ the phoneme dictionary
would be defined as:

teeth.dictionary =
{0: [‘T’],
1: [‘IY’],
2: [‘TH’, ‘F’, ‘T’]}

For the final phoneme, there are two expected PEPs; fronting
(TH → F) and stopping (TH → T), both typical substitution
type PEPs present in normal populations of children aged 3yrs-
3yrs;11mths and 3yrs-3yrs;5mths respectively. This same error
pattern in older children may be indicative of language delay
[21].

As opposed to training the transition probabilities between
HMM states, the phoneme dictionary is utilized to weight the
connections. The traditional Viterbi algorithm is then used to
infer the most likely sequence of phonemes [22]. Figure 2
demonstrates the three different transition weights used; Ws,
transition back to the current phoneme state, We, transition
to a phoneme state in the phoneme dictionary (an expected
phoneme) and Wu, transition to an unexpected phoneme (whilst
Wu 6= 0 , transitions to phonemes other than those in the
phoneme dictionary are possible). Through manual definition
and tuning of these weights, it is hypothesized that the sys-
tem can achieve a good level of accuracy despite utilizing small
data-sets for which the statistical occurrence of particular errors
is not representative of the general population.
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Figure 1: Three stage architecture of the proposed system
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2.3. Phonological Error Patterns (PEP) Detection

The final stage takes the recognized phoneme string from Stage
2 and performs global alignment with the target word using
the Needleman-Wunsch Algorithm [23]. This allows regions
of phoneme substitution, insertion and deletion to be detected
and passed through a decision tree to determine the PEP. Typi-
cal PEPs, like fronting and stopping, are recognized with refer-
ence to the phoneme dictionary in the second stage, whilst those
not present in the dictionary are deemed to be atypical (e.g.
the backing error TH → S in the word ’teeth’). This, coupled
with information about the child such as age and gender, builds
the basis for automating the system to evaluate whether typical
PEPs are age appropriate or indicative of delayed speech.

2.4. Speech Corpus

The speech corpus used in this work consisted of 114 unique
child speakers, aged between 3 and 14 years, with a range of
underlying disorders (57 with Cerebral Palsy, 28 with with id-
iopathic or development speech disorder, 25 children born pre-
term =< 30 weeks and 4 normal children). The data was col-
lected by expert SLPs from the Murdoch Children’s Research
Institute and contains correct and misarticulated word samples
as evaluated by an expert SLP. Only recordings deemed to be
‘good’ (word clearly intelligible, with low background noise
and an undistorted recording) were used. A sub-set of 8 words
exhibiting typical PEPs from the DEAP Phonology, Inconsis-
tency and Articulation sub-tests were selected to test the proof
of concept system. In total 1081 utterances were used, 39.50%
which were misarticulated. These utterances represent 21 of
the 39 phonemes used in Australian English. There were 92
speakers used for training the HNN models and a hold out set
of 12 speakers for validation (i.e. selection of model parame-
ters). There were then 10 individual speakers used for testing
the model (unless otherwise indicated).

3. Experiments
In order to demonstrate the feasibility of the proposed system,
experiments were performed to test the efficacy of phoneme
recognition and PEP detection. We will be comparing our
constrained HMM decoder with the results obtained from a
speaker-independent HMM decoder (HVite in the HTK toolkit).
The HVite HMM decoder was trained using the same phoneme
acoustic models as the constrained HMM decoder but utilized
a standard lattice, trained using the forward-backwards algo-
rithm. The performance of the two decoders were compared
using the speech corpus and testing process outlined in section
2.4. Both decoders utilize the same set of emission outputs (i.e.
posterior probabilities) from the split temporal context HNN.

3.1. Stage 2: Constrained HMM Decoder

3.1.1. Optimization

Before evaluating the constrained HMM decoder, the weights
in Figure 2 required optimization. Two parameters, magnitude
of Wu, and the relative magnitude of Ws:We, were optimized
individually whilst the other was held constant after, an initial
coarse grid search of possible values was performed. Wu was
varied from 1× 104 to 1× 10−1 and Ws:We was varied from
100:1 to 1:100. The phoneme error rate (PER) was measured for
these values and weights which balanced the minimum PER for
misarticulated and correct phonemes, as well as overall PER,
were selected.
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Figure 3: Phoneme error rate (PER) for different values of Wu
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Figure 4: Phoneme error rate (PER) for different values of the
ratio We : We

Figure 3 shows the results of varying Wu. As Wu is de-
creased towards zero, the overall PER also reduces. However
the PER for misarticulated phonemes increases slightly when
Wu < 1, despite the PER for correct phonemes continuing to
decrease. To balance these conditions Wu = 1 was selected.

Figure 4 indicates that as the ratio is increased in the favor
of We the PER increases dramatically. It was observed that this
was caused by a rapid increase in the number of erroneous inser-
tions (from an average of 0.07 insertions per word at Ws:We =
100:1 to 0.27 insertions per word at Ws:We = 1:100). The rate
of deletions increased slightly at ratios favoring Ws however
this effect was minimal. To ensure stable decoding, the ratio
Ws:We = 5:1 was selected. It was also found that weighting all
typical We equally increased the rate of false negatives, it also
increased the rate of true positives for mispronunciations. Thus
equal weighting for all typical We was used as in this work pri-
oritized the correct recognition of mispronunciations over false
negatives.

The dimensionality of the features vectors used in the HNN
acoustic models was investigated for three cases; use of MFCC
+ ∆ + ∆∆ coefficients, MFCC + ∆ and base MFCC only. Seen
in Table 1, the lower dimension vectors improve the PER of the
misarticulated and correct phonemes. For the misarticulated
phonemes, the PER improvement of the base MFCC features
was significant, with a 77.35% and 84.78% improvement over
the MFCC + ∆ and MFCC + ∆ + ∆∆. This is an unusual re-
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Table 1: Phoneme error rate (PER) for correct and misarticu-
lated phonemes for decreasing feature vector dimensionality

MFCC∆∆ MFCC∆ MFCC
Correct
Phonemes

20.48% 20.1 % 19.90 %

Misarticulated
Phonemes

43.75% 29.41 % 6.66%
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Figure 5: Phoneme error rate (PER) for different data quanti-
ties using the HVite HMM and constrained HMM decoders

sult for an ASR system and requires further investigation across
larger data-sets.

3.1.2. Performance of Constrained HMM Decoder for small
data sets

The constrained HMM decoder was tested against the HVite
decoder to evaluate whether the hypothesized improvement in
PER for small data sets could be achieved. In this experiment
the acoustic models were trained on an utterance set, ranging in
size from 20 to 70 utterances per word, randomly selected from
the 92 training speakers. For each word with a common mis-
pronunciation, half of the training utterances would have this.

From Figure 5 it can be seen that the constrained HMM
approach offers consistently better PER than the HVite decoder
yielding, on average, a relative PER improvement of 33.12%.
Furthermore, the constrained HMM decoder achieves approx-
imately the same overall PER with 20 utterances per word as
is possible with the 70 utterances using the HVite decoder. For
less than 30 utterances a sharp increase in PER was noted, so
utilizing a minimum of 30 utterances is recommended.

3.2. Stage 3: PEP Detection

Two experiments were performed, the first to determine whether
the system can demonstrate clinical accuracy by replicating hu-
man SLP diagnoses and the second to test whether the accuracy
of PEP detection can be maintained for small data sets. The first
experiment selects six test speakers, half of whom have have
been identified by an expert human SLP as having as having
correct, low-risk speech and half of whom have been diagnosed
with typical PEPs indicative of moderate-risk speech (focusing
on two specific PEPs; fronting and gliding).

For the speakers with low-risk speech, 77.77%, 90.00%
and 96.72% of phonemes were recognized correctly (on aver-
age 87.26% across speakers) indicating that a threshold-style

Table 2: PEP recognition accuracy for fronting and gliding for
the test speakers

Fronting Gliding
Speaker 4 100% N/A
Speaker 5 100% 60%
Speaker 6 80% 100%

Table 3: Recognition accuracy for gliding and fronting when
varying the quantity of training utterances

30 50 70
True Positive PEP 63.16 % 82.35% 94.12%

approach would be effective for identifying low-risk speakers.
For the speakers with typical PEPs, 92.86% of correctly spoken
phonemes were identified as such with only 12.00% false pos-
itives. Table 2 outlines in detail the recognition accuracy for
the misarticulated phonemes, grouped by PEP for each speaker.
Table 2 shows that the majority of fronting and gliding errors
can be accurately detected not only as errors, but as their spe-
cific error pattern. This accuracy indicates that, along with uti-
lization of normative data about PEP production [21], the sys-
tem could be used to evaluate whether these speaker’s PEP are
delayed or age-appropriate.

The second experiment utilises the same random test set
from Section 3.1 and evaluates the accuracy rate (true positives)
for fronting and gliding type PEPs for different size utterance
data sets. Table 3 shows larger data sets offer greater error
pattern recognition accuracy, however, more than half of the
tested PEPs could still be correctly identified when smaller sets
of training utterances were utilized. This indicates that even in
the presence of scarce data, PEP detection could be utilized in
the system’s evaluation of children’s speech.

4. Conclusions
A proof of concept system has been developed to screen for
broad speech development issues in children by identifying
PEPs. Results indicate that the proposed system can identify
phoneme errors with a relatively high level of accuracy despite
using only a small data set of disordered Australian children
speakers for training. Building upon the data efficiency of the
HNN acoustic model, a constrained HMM decoder encoded
with SLP knowledge reduced the PER by an average of 33.12%
relative to a HVite HMM decoder trained on the same corpus
and achieved a minimum PER of 19.03%. The results also
demonstrate that specific error patterns, gliding and fronting,
can be detected with a recognition accuracy of up to 94.12%.

Future work involves transitioning from a proof of concept
system to a functional screening tool. This will included the
addition of a larger set of target words, which will enable more
atypical PEPs to be identified. To allow the screening tool to
be used by non-experts, further integration of SLP knowledge
into the system will be pursued. This will include a knowledge
base of developmental norms, which along with the detected
PEPs, age and gender of the child, will allow for determinations
of typicality of error and inform risk assessments. Finally, we
will develop a mobile platform to administer the test. For this
delivery component of the work, we would also like to work
together with children to present the test content in new and
engaging ways, possibly in the form of a game.
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