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Abstract
Automatic prediction of engagement in human-human and
human-machine dyadic and multiparty interaction scenarios
could greatly aid in evaluation of the success of communication.
A corpus of eight face-to-face dyadic casual conversations was
recorded and used as the basis for an engagement study, which
examined the effectiveness of several methods of engagement
level recognition. A convolutional neural network based analy-
sis was seen to be the most effective.
Index Terms: Conversational Engagement level Recognition,
Human Social Behaviour

1. Introduction
Recently, much attention is being paid to the concept of
socially-intelligent human-robot interaction, which aims to en-
able social robots or agents to interact naturally with humans.
Specifically, a robust engagement model and automatic en-
gagement recognition system for human-human and human-
machine conversations in dyadic and multiparty interaction sce-
narios is needed to evaluate the success of social and task-based
communication. This model would have a wide range of appli-
cations in areas including spoken dialogue systems, event de-
tection in videos of conversations, detection of user satisfaction
when using designated devices, and online monitoring of suc-
cess in service conversations.

In this paper, we discuss the phenomenon of engagement
and highlight relevant work. We then describe our current
work on recognition of engagement levels in face-to-face dyadic
conversations using audio and visual cues. We describe our
methodology, and report an evaluation study based on a corpus
of non-task oriented (casual) human-human dialogues collected
in our laboratory.

1.1. Engagement

Engagement is defined by Sidner as “The process by which
two (or more) participants establish, maintain and end their
perceived connection. This process includes: initial contact,
negotiating a collaboration, checking that other is still taking
part in the interaction, evaluating whether to stay involved and
deciding when to end the connection.” [1], [2]. Inference of
engagement level is an obvious way to learn social behaviour
factors such as interest in the theme of a conversation, bonding
between interlocutors, and level of social rapport. Gatica-Perez
relates displayed level of engagement to interest, which he de-
fines as a term used “to designate people’s internal states re-
lated to the degree of engagement displayed, consciously or not,
during social interaction.” [3]. Non-verbal behaviours such as
facial expression, gesture, and posture play a major role for hu-
mans when inferring information from partners [4], and such

non-verbal cues have been proposed as perceptible factors that
can be used to estimate engagement level [5].

1.2. Related Work

There has been extensive study of social engagement, involve-
ment or social interest in both human-human and human-
machine scenarios, focussing on areas including definition of
related concepts, annotation, engagement model design, and
engagement prediction, particularly using auditory and visual
cues.

An early example of engagement detection is found in Yu
et al. (2004), where speech emotion recognition was adapted
to perform user conversational engagement estimation. A sup-
port vector machine (SVM) was used to classify users’ emotion
as expressed in individual utterances from two corpora - one
of acted emotion and the other of social telephone conversa-
tions. The emotion labels obtained from the SVM were then
used as inputs to coupled hidden Markov models for detection
of engagement states. [6]. Hsiao et al. (2012) investigated en-
gagement level estimation based on the idea that social engage-
ment, seen through patterns of turntaking and speech emotion,
is an observable form of inner social interest. They collected 11
dyadic conversations from 9 participants over two iPhone 3Gs
and annotated the engagement level on a scale from 1 (strongly
disengaged) to 4 (strongly engaged). A hierarchical model of
speech and turntaking features was used to classify into two
levels (low and high), with accuracy close to 80% [7].

Multimodal visual and audio cues including gaze, blinking,
pitch level and intensity were used by Oertel et al. (2011) for in-
volvement level prediction. They annotated involvement levels
scaling from 0-10 (0 being the lowest level, 10 the highest) on
the D64 human-human conversation corpus [8], and modelled
involvement level using features drawn from manually anno-
tated mutual gaze and blinking visual features, and automati-
cally extracted acoustic features including pitch level and inten-
sity [9]. Salam et al. (2015) explored engagement detection
in conversations between 8 participants and a Nao Robot. Fea-
tures such as head nods, head pose, face location, speaking and
silence periods, and ‘addressing the speech to someone’ were
extracted. The engagement level in their work is binary, distin-
guishing engagement and disengagement. Sanghvi et al. (2011)
investigated detection of engagement with a game companion (a
cat-like robot), they annotated engagement levels into yes or no
with the detailed reasons that the user was engaged or not en-
gaged during the segments. Motion features such as body lean,
and silhouette were used for classification in Sanghvi’s work
[10].

Apart from engagement level recognition, Bohus et al.
(2009) introduced a machine learning approach to predict en-
gagement intentions in the interaction between a human and
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an avatar dialogue system. They used location features, face-
frontal features and manually labelled attention features from
the training feature sets [11]. Anzalone et al. (2015) evaluated
engagement with Social Robots (Nao and iCub respectively),
using recorded head pose and body gesture to generate a set of
metrics and to show how engagement perception was sensed by
a human, and how engagement levels changed during the inter-
action [12]. Hall et al. (2014) investigated the effects of a robot
having natural human familiarity engagement responses of nod-
ding, blinking, and gaze direction when interacting with partic-
ipants [13]. Yu et al. (2015) created an engagement aware-
ness dialogue system named TickTock [14], where engagement
analysis constituted an important part of the dialogue system al-
lowing the system sense the states of participants and guide the
dialogue manager to decide a suitable conversation strategy.

In our work, we focus on engagement level recognition in
human-human face to face conversation. We explore the use
of several visual and auditory features familiar from emotion
detection but previously unused in the recognition of engage-
ment level, using training methods including Local Binary Pat-
terns (LBP) with Principal Component Analysis (PCA), de-
tailed facial movements, loudness shape features, and convo-
lutional neural networks (CNN). We also perform comparisons
with previously used features such as Mel Frequency Cepstral
Co-efficients (MFCCs ).

2. Methodology
In order to predict different levels of engagement using non-
verbal cues, we explored a multi-modal visual and auditory
feature-based learning method and deep learning using the con-
volutional neural networks.

2.1. Feature based “shallow” learning with Visual Cues

Both appearance and geometric hand-crafted visual features
were used. Texture feature extraction was based on local bi-
nary patterns (LBP) with principal component analysis (PCA)
for the dimensionality reduction. Geometric features were com-
puted from 51 extracted facial landmarks.
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Figure 1: Visual features based learning overview.

2.1.1. LBP+PCA

Ojala et al [15] introduced the basic LBP operator and later Ex-
tended LBP (aka Circular LBP) [16]. Circular LBP can encode
more details thanks to the flexible arbitrary radius and sample
points, although computational cost is higher. A simple circular
LBP with 8 neighbours and radius set to 1 was used for texture
feature extraction in the work described here.

A simple Haar-like feature-based face detection [17], [18]
was used for cropping the face images. All face images were
resized to 98 x 115 pixels and converted to grey scale as inputs
for computing the LBP operators. Each face image was divided
into 4x5 sub-areas, the amount of LBP code is 4 x 5 x (28) =
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Figure 2: Left: Basic LBP (3x3); Right: Circular LBP with
radius = 1 and neighbours = 8

5120. Some very minor Gaussian smoothing was also added.
The obtained LBP feature was dimensionality reduced by ap-
plying PCA before classification.
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Figure 3: Left: divide the face image into 4x5 sub-regions;
Right: Visualization of Circular LBP with a tiny bit smooth

2.1.2. Facial Landmarks + Head Pose

Face landmarks and head pose estimation were implemented
based on work in [19] - 49 facial landmark locations with two
eye centre locations plus head pitch/yaw/roll positions were ex-
tracted from each input frame. Eyebrow/lip movement, facial
component angle and distance were calculated based on the
landmarks. Facial angle/distance is motivated by Hernandez’s
work [20], as illustrated in Figure 4.
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Figure 4: Facial landmarks and shapes

2.2. Features based “shallow” learning with Auditory Cues

Low-level features like pitch level, MFCCs, and loudness were
extracted for auditory cues. Pitch features have been studied
before, with researchers reporting different recognition results -
Yu’s work found that pitch is insignificant for engagement [21],
in contrast to Voigt’s reported results [22]. An overview of the
auditory features contribution is shown in Figure 5.

2.2.1. Pitch, MFCCs and Loudness

The encoded wav file was downsampled to 16kHz, features
were extracted in a frame window 500 samples or 500/16k =
31.25ms wide. The step size was half of the window size con-
taining 250 samples and causing 250 samples overlap. Every
second, there were 16k/250 = 60 feature vectors. The window
size of basic feature extraction is small, while human social,
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Figure 5: Auditory features based learning overview

emotional and cognitive states may last for several minutes.
Therefore, after the basic features were obtained, a window size
of half a second was applied to the feature set to generate an av-
eraged feature set, using the method employed in previous work
by Hernandes and by Hsiao [20], [7]. The newly generated fea-
ture set contains: pitch level, 12 MFCCs, and loudness.

2.2.2. Auditory Shape and Angle Features

A shape and angle method was performed on the loudness curve
from our data, inspired by the method used by Hernandes[23]
to generate features related to heart rate, which were then used
in classification of body movements or positions such as sitting
and lying. In our work, the two maximum and two minimum
values in a period were selected. The four descriptive points
marked in green showed in Figure (6) were used to generate
features related to the distance and angle in the loudness curve.
These features may be useful in inferring other information like
duration of high or low speech and the gradient of changing
voice.
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Figure 6: Auditory Shape and angle feature

2.3. Deep learning

We used a traditional 3 convolutional layer convolutional neural
network with 64, 64, 128 filters in each layer. The activation
function was Rectified Linear Unit (ReLU). The convolutional
layer was followed by a max-pooling layer, using dropout of
0.2. The CNN codes were extracted for transfer learning for
future work.

FC Softmax

CNN Codes
CNN

Consecutive Face 
Image Sequences

Image pre-processing

COV1 COV2 COV3

Figure 7: Convolutional neural networks structure

3. Evaluation
3.1. Material

As part of our ongoing work, we are collecting a corpus of
human-human spontaneous causal face to face dyadic conversa-
tion among English native speakers. Conversation length ranges
from 8 to 22 minutes. The recording was carried out in a quiet
room, avoiding any background noise. Participants sat face to
face. Each participant wore a lapel microphone. Two HD video
recorders were placed between the two speakers to record a
frontal view of each face, while a 360 degree camera and a low
resolution birds-eye view camera were also used to record the
overall recording procedure. The raw recorded video file is 60
frames per second, and the audio file is 48kHz with 16 bits. For
our current study, we used data from 8 conversations involving
15 native English speakers (one speaker was repeated), a total
of 257 minutes of data. The data was annotated by two annota-
tors trained on engagement concepts, and generated a Cohen’s
Kappa coefficient of 0.87.

We also annotated the Cardiff natural conversations(CCDb)
[24] which contain 6 subjects, eight 5-minute dyadic conversa-
tions, but found very few segments of disengagement and no
strong disengagement. In the data we collected, strong disen-
gagement was very rare; only one male participant appeared
unwilling to continue the conversation with his female partner
and finally ended the conversation by just sitting with no mu-
tual gaze interaction. In Yu’s work on human-machine interac-
tion, strong engagement and strong disengagement were very
rare [14]. However, in contrast to Yu’s human-machine results,
we found strong engagement quite often in the human-human
datasets we have analysed - both our own corpus and the CCDb
corpus.

The proposed methods were evaluated on recognition of en-
gagement levels scaling from 0 to 3 as shown in table 1. A
10-fold cross-validation procedure was used to evaluate gener-
alization performance. LibSVM [25] with one-to-one approach
for multi-class classification was used. The Torch deep learning
framework [26] was used for ConvNet.

5-level Engagement Annotation
End of the previous segment

Engagement Initialization

Maintain

0. Strong
Engaged

Very engaged and strongly want
to maintain the conversation

1. Engaged Interest but not very high,
e.g. willing to talking with no passion

2. Nature Neither show interest or lack of interest
3. Disengaged Less interest in the conversation
4. Strong
Disengaged

No interest to continue the conversation at all,
want to leave the conversation

End Connection

Table 1: Engagement annotation scheme

3.2. Evaluation: LBP + PCA

8000 cropped face images were randomly selected from the
whole dataset for LBP feature extraction - each class contained
2000 images. Each image had 5120 LBP operators as inputs to
PCA. The first 200 principal components (PCs) were kept and
accounted for 96.14% of total principal component variance.
Figure 8 shows a 3D plot of the first three principal components.
The radial basis function (RBF) kernel type and grid search ap-
proach for best parameters were used. 10-fold cross-validation
was carried out for the 4-class recognition task. Prediction ac-
curacy was 85.75% (Precision: 0.857, Recall: 0.858, F-sore:
0.856), compared to an appropriate baseline of 25% in our case
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(each engagement level has 2000 instances, thus 2000/8000 =
25% can be used as the baseline).
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Figure 8: PCA visualization with the first three PCs

3.3. Evaluation: Head pose + Landmark

A feature set comprising raw head pose with yaw/pitch/roll re-
sulted in recognition accuracy of 46.49% ( Precision: 0.470,
Recall: 0.465, F-Measure: 0.464), a 21% absolute improve-
ment on baseline (25%). Each engagement level used 2827
frames. For the facial landmark feature set, seven facial com-
ponent distances and three angles were computed based on the
landmark locations shown in Figure 4. This feature set achieved
accuracy of 65.39 % (Precision: 0.653, Recall: 0.654, F score:
0.653). Combining head pose and facial component features led
to higher accuracy – 88.77 % (Precision: 0.895, Recall: 0.888,
F-Measure: 0.889).

3.4. Evaluation: Acoustic features

After applying 0.5 second windows as described in section
2.2.1, the middle level features were directly used for classifica-
tion. This evaluation was prone to overfitting as some annotated
segments of nature and disengagement contained silent parts.
Silence does not seem to carry any information for low level
acoustic features, while it represents a significant amount infor-
mation in the engagement case (e.g. silence is observed when
participants are thinking, listening etc.). A crude method was
firstly implemented by cropping out all the silent parts. A sec-
ond method was used based on work in [7], [27], where length
of silence, and number of turns were computed within every 10
seconds windows.

We only present 2-level engagement (1 - low engagement, 0
- strong engagement) prediction results here using the cropped
data set with no silence interruptions with the combined MFCCs
and pitch level features. The crude method resulted in 57.28%
accuracy (close to the baseline 50%). Results for the second
method did not show much improvement over this, at 62.29%,
they were only 12% better than random guessing. Other kernel
types of linear, sigmoid and polynomial were tried, without an
improvement in results. These results may be due to the par-
ticular data set we used, or the features themselves may not be
suitable for recognition of engagement.

3.5. Evaluation: Auditory shape features

The auditory loudness raw amplitude features of two classes:
strong and low engagement were used for prediction, obtaining
68.049% prediction accuracy. (771 instances / 1542 instances

= 0.5 as the baseline). Peak and minimum values of subset in-
put signal vectors were found. Distance and angle were com-
puted from the selected two smallest plus two largest values as
shown in Figure 6. Each sub-basement contains 6 distances and
4 angles are used as feature vectors. Auditory shape features re-
sulted in slightly higher accuracy of 76.78% (Precision: 0.788,
Recall: 0.768, F-Measure: 0.731) compared to just using loud-
ness amplitude, and were 26% better than the baseline of 50%.

3.6. Evaluation: CNN

12528 cropped face images were selected to train the CNN,
each level had 3132 images. 80% of total images (10022) were
used for the training set and the remaining 20% (2506) for a test
dataset. Data argument can extend the possible training set to
a much larger amount by applying several transforms, random
scales/crops or image jitter and flip, while increasing compu-
tational consumption. As a first attempt for the 4-classes en-
gagement level recognition, the original dataset was used. The
average rows correct was 91.689%, average rowUcol correct
(VOC measure) was 84.72%, and the global correct score was
91.660%.

Disengagement Nature Engagement Strong
Engagement

Row
Precision

Disengagement 603 23 11 1 94.514%
Nature 5 583 18 5 95.417%

Engagement 12 26 552 48 86.52%
Strong Engagement 3 19 38 559 90.307%

Table 2: CNN Confusion Matrix

4. Conclusions
The use of facial detail components features as in Hernandez’s
work [20] obtain higher accuracy in our implementation, even
though the method was originally proposed for analysis of states
of TV viewers rather than interlocutors. Results from circu-
lar LBP features were slightly lower (3%) than facial compo-
nents with head pose. We believe using other LBP methods,
such as manifold LBP, may get a better results. Both tex-
ture and geometry features are useful for engagement recog-
nition. Low level acoustic cues, pitch level and MFCCs, did
not perform well in our work. However, loudness was signifi-
cant when analysing engagement using auditory features, with
improved performance when dynamic characteristics were con-
sidered. Further data collection may be needed to explore en-
gagement in phone conversations or longer face to face conver-
sations. In addition, this data set was collected in a experimen-
tal environment, so there is plenty of scope for work to explore
engagement models in the wild. Fusion of visual and auditory
cues is especially needed for engagement research as the occur-
rence of engagement during silent periods requires visual cues,
and all recognition is enhanced by the use of both modalities.
The CNN method obtained the best results, and thus we plan to
further investigate deep learning methods and multimodal fea-
ture fusion for engagement research in the futures.
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