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Abstract 
This paper proposes a sequence-to-frame dynamic time 
warping (DTW) combination approach to improve out-of-
vocabulary (OOV) spoken term detection (STD) performance 
gain. The goal of this paper is twofold: first, we propose a 
method that directly adopts the posterior probability of deep 
neural network (DNN) and Gaussian mixture model (GMM) 
as the similarity distance for sequence-to-frame DTW. Second, 
we investigate combinations of diverse schemes in GMM and 
DNN, with different subword units and acoustic models, 
estimate the complementarity in terms of performance gap and 
correlation of the combined systems, and discuss the 
performance gain of the combined systems. The results of 
evaluations conducted of the combined systems on an out-of-
vocabulary spoken term detection task show that the 
performance gain of DNN-based systems is better than that of 
GMM-based systems. However, the performance gain 
obtained by combining DNN- and GMM-based systems is 
insignificant, even though DNN and GMM are highly 
heterogeneous. This is because the performance gap between 
DNN-based systems and GMM-based systems is quite large. 
On the other hand, score fusion of two heterogeneous subword 
units, triphone and sub-phonetic segments, in DNN-based 
systems provides significantly improved performance. 
Index Terms: spoken term detection, keyword search, system 
combination, deep neural network, Gaussian mixture model, 
subword unit 

1. Introduction 
In the field of automatic speech recognition (ASR) and 
statistical machine translation, combining the outputs of 
diverse systems to improve performance has been extensively 
researched [1-16]. In ASR, systems are combined using 
schemes such as ROVER [1], confusion network combination 
(CNC) [2], and minimum Bayes risk (MBR) [3, 4]. It has also 
been reported that significant improvements on STD tasks can 
be obtained by carefully selecting diverse ASR components, 
such as acoustic model, decoding strategy, and audio 
segmentation [5-7]. The complementarity of the combined 
systems is crucially important to performance improvement, 
where the systems being combined are independently trained 
and combined in post-processing steps [8-12]. When the 
performance gap is very large, the combination has often been 
seen to yield negligible gains and even degraded performance. 
Therefore, combining independent systems with comparably 
high performance is desirable [13, 14]. Both the performance 

gap and similarity of detected candidates are highly correlated 
with performance gain. However, the systems being combined 
are typically not guaranteed to be complementary and deriving 
a complementary system theoretically is very difficult. Niyogi 
et al. [14] designed multiple systems through a procedure that 
directly minimizes the correlation of their respective errors. 
Boosting is a machine learning technique that is specifically 
designed to generate a series of complementary systems [15, 
16]. The aim of boosting is to train a number of systems that 
may perform poorly individually, but perform well in 
combination.  

Spoken term detection (STD) is used to locate all 
occurrences of the query word/phrase in the search audio 
database [17, 18]. Almost all ASR systems employ a fixed 
vocabulary. Words that are not in this fixed vocabulary, OOV 
words, are not correctly recognized by the ASR system, but 
are instead misrecognized as an alternate with similar acoustic 
features. This results in the subsequent word-based STD not 
being properly conducted. The effects of OOV words in STD 
can be rectified using subword-based detection [19-23] or 
phonetic posteriorgram template matching [24, 25]. In 
subword-based STD, system combination can be carried out 
by score fusion of the frames or detected lists. The simplest 
frame-synchronous combination technique fuses the posterior 
probabilities of the combined systems. When the systems 
being combined have different frame configurations, fusing 
the scores of the time-equivalent ranked lists during post-
processing is preferred. Subword-based STD thus benefits 
from combination, because combination can be carried out at 
various stages and on various schemes. DNN is being 
successfully employed in ASR nowadays [12, 26-28]. 
Swietojanski et al. [4] reported that combing GMM-hidden 
Markov model (HMM) and DNN-HMM systems with MBR-
based combination of lattice leads to reduced word error rate 
in ASR. In this paper, we investigate the combination effect of 
heterogeneous systems on GMM- and DNN-based STD. We 
hypothesize that because DNN and GMM are highly 
heterogeneous combining them can yield further performance 
gain. 

The remainder of this paper is organized as follows: Section 
2 describes sequence-to-frame dynamic time warping for STD. 
Section 3 discusses score fusion of diverse systems. Section 4 
presents the results of experimental evaluations that show that 
combination with a new subword unit can maximize diversity 
and yield better improvement than other combination 
approaches, which are carried out using different feature 
inputs and different subword units in DNN- and GMM-based 
systems. Finally, Section 5 concludes this paper. 
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2. Sequence-to-frame dynamic time 
warping for OOV STD 

In sequence-to-frame DTW, a query is first transformed into 
one of three types of symbolic sequence representations: 
context-dependent phoneme, in practice simply called 
triphone; sub-phonetic segmentation (SPS); or their HMM 
state. We varied the subword based on linguistic knowledge to 
derive a new proposed subword unit, SPS, to alter the model 
space of the conventional triphone. The novel SPS combined 
with a triphone resulted in improved performance gain [23]. 
The sequence-to-frame DTW is based on the following:  
 

,ݍ)ܩ (ݎ = ݉݅݊ ቐ
,ݍ)ܩ ݎ − 1) + ,ݍ)]ܦ ,ݍ)|(ݎ ݎ − 1)]                
ݍ)ܩ − 1, ݎ − 1) + ,ݍ)]ܦ ݍ)|(ݎ − 1, ݎ − 1)]
ݍ)ܩ − 1, (ݎ + ,ݍ)]ܦ ݍ)|(ݎ − 1,                [(ݎ

ቑ 

(1) 

where ݍ is an HMM-state or a subword of a subword sequence 
of a query, and ݎ is a frame of the search audio database. Here, 
although both subwords and HMM-states of subwords are 
tested in experiments, for convenience, we simply denote them 
HMM-states. ݍ)ܩ,  denotes the cumulative dissimilarity of (ݎ
an HMM-state, ݍ, up to the ݎ-th frame. ݍ)ܩ,  is normalized (ݎ
in the last HMM-state of a query by the detected interval and 
this normalized dissimilarity value is used as score. The 
portion of the score that is less than a predefined threshold 
value is detected as a spoken term and ranked in a detected list. 
In the right side of Eq. (1), the first path corresponds to self-
transition in HMM and the second path is other-transition. The 
third is deletion of state, where it can be expressed as skip-
transition—which is not usually employed in the common 3-
state HMM topology of current ASR systems. The second 
term on the right side of Eq. (1), ܦ[∙], is the sequence-to-frame 
dissimilarity distance. This DTW calculation is a variant of the 
Levenshtein distance, in which the local dissimilarity distance 
is practically calculated by posterior probability. 
In this paper, two kinds of posterior probability are adopted 

for the sequence-to-frame dissimilarity distance: scaled 
likelihood of GMM, given in Eq. (2), and softmax output of 
DNN, given in Eq. (6). The posterior probability of state ݍ 
given the acoustic observation ௧ at frame ݐ from the acoustic 
likelihood of GMM is estimated as, 

(௧|ݍ) =
(ݍ)ܲ(ݍ|௧)

∑ ೖ∈ொ(ݍ)ܲ(ݍ|௧)
 (2) 

ெெீܦ =                                          ൯(௧|ݍ)൫݈݃−

                    ≈ ൯(ݍ|௧)൫݈݃− + log ቆ (ݍ|௧)
ೖ∈ொ

ቇ 
(3) 

Using noninformative priors, uniform distribution ܲ(ݍ) =
.ݐݏ݊ܿ ݍ∀ ∈ ܳ, and taking negative logarithm from the scaled 
likelihood of Eq. (2), the local dissimilarity distance of GMM 
is the negative log state posterior probability, Eq. (3).  
A DNN, as used in this paper to calculate the HMM-state 

posterior probability, (|ݍ௧),  is a feed-forward, artificial 
neural network from a stack of (ܮ + 1) layers, where (ܮ − 1) 
hidden layers are log-linear models between the 0-th input 
layer and the top L-th output layer [26]. Each hidden unit, ݆, of 
the ݈-th layer uses the logistic function to map its total input, 

݈) , from theݔ − 1)-th layer into the scalar state, ݕ , that it 
sends to the ݈-th layer. 

 

ݔ = ܾ +  ݓݕ


 (4) 

ݕ = ൯ݔ൫ܿ݅ݐݏ݈݅݃ =
1

1 + ൯ݔ−൫ݔ݁
 (5) 

where ܾ is the bias of unit ݆, ݅ is an index over units in the 
(݈ − 1)-th layer, and ݓ is the weight on a connection to unit 
݆ from unit ݅  in the (݈ − 1) layer. For state posterior 
probability, (|ݍ௧), each unit ݆ of the top L-th output layer 
converts its total input, ݔ = ݔ

 , using the softmax function as 
follows: 

(௧|ݍ) =
ݔ൫ݔ݁

൯
∑ ೖݔ൫ݔ݁

 ൯ೖ∈ொ
 (6) 

ேேܦ =                       ൯(௧|ݍ)൫݈݃−

                   = ݔ−
 + log ቆ ೖݔ൫ݔ݁

 ൯
ೖ∈ொ

ቇ 
(7) 

Further, the local dissimilarity distance of DNN is calculated 
in Eq. (7) by taking the negative logarithm of the state 
posterior probability of Eq. (6). 

3. Score fusion of complementary systems 
We surmise that combining detection candidates generated 

by different systems can yield performance gain over all 
individual systems. Score fusion of systems can be performed 
at various levels—frame, state, or detected term. The simplest 
approach is to perform frame-synchronous combination by 
using a linear interpolation of the observation log-likelihoods 
of N multiple systems as 

݈݃ (ݍ|௧) =  ߙ ݈݃ (ݍ|௧)
ே

ୀଵ

, ݁ݎℎ݁ݓ  ߙ = 1
ே

ୀଵ
 (8) 

where ߙ is the interpolation weight of system n, (௧|ݍ) is 
the combined likelihood of observation ௧  given the HMM-
state ݍ, and (௧|ݍ) is the likelihood from the n-th system [4, 
12]. 
In order to apply unified score fusion for various frame 

configurations, HMM-state of GMM-based systems and input 
and output layers of DNN-based systems, we perform score 
fusion on detected term lists at the final detection decision. 
First, the detected term lists are aligned across systems based 
on the overlap of timespans, and the score of the aligned terms 
are fused across the ܰ systems as,  

ௗݏ̂ =  ߙ ∙ ௗ,ݏ

ே

ୀଵ

   ݁ݎℎ݁ݓ            , ߙ = 1
ே

ୀଵ
 (9) 

where ݀  is the overlapped alignment term which is the 
detection result given by ranking the similarity scores, ݊ 
denotes the n-th system being combined, ݏௗ, is the score of 
detected term ݀ of the n-th system, and ̂ݏௗ is the merged score 
of detected term ݀. If a detected term does not appear in any 
system’s list, that system is assumed to have assigned it zero 
probability. In experiments, the interpolation weight ߙ  is 
empirically decided for best performance. 
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4.  Experimental results 

4.1. Spoken Term Detection Task 
In this section, the results of experiments conducted on 

NTCIR10 STD task data, which are fully described in [29, 30], 
are presented and analyzed. The data comprise a total of 104 
oral presentations (28.6 hours) for the search audio database, 
along with 100 queries and their relevant segments.  
In the experiments, two feature vectors were extracted from 

186 hours of Corpus of Spontaneous Japanese data [31]. The 
first feature vector for both triphone and SPS consisted of 12-
dimensional Mel-frequency cepstral coefficient (MFCC) and 
one power with first and second derivatives—a total of 39 
dimensions. The second feature vector, for DNN only, 
consisted of a 40-dimensional log filter-bank (FBANK) with 
first and second derivatives—a total of 120 dimensions. For 
DNN training, the input layer was formed from a context 
window comprising 11 frames, creating an input layer of 429 
units for MFCC and 1320 units for FBANK. The DNN had 
one, three, and five hidden layers, each with 2048 units. The 
respective number of units for the output layer was 430 for 
SPS, 1290 for SPS-state, 10325 for triphone, 30975 for 
triphone-state, and 3078 for phonetic decision tree based tied 
triphone-state. These specifications are summarized in Table 1.  
 

Table 1: Summary of input layers, output layers, and 
respective number of units in the DNN-based systems. 

Feature of input layer Number of units 
MFCC 429 

FBANK 1320 
Subword or state of output layer Number of units 

Triphone (TRI) 10325 
Triphone state (TRI-state) 30975 

Tied triphone state (TiedTRI-state) 3078 
SPS 430 

         SPS state (SPS-state) 1290 
 

The networks were initialized using layer-by-layer generative 
pre-training and then discriminatively trained using 
backpropagation and the cross-entropy criteria. GMM with 
maximum likelihood estimation was used for forced alignment 
in DNN. DNN training was carried out using stochastic mini-
batch gradient descend with a mini-batch size of 256 samples. 
During pre-training, a learning rate of 2.0e-3 per mini-batch 
was used for the first Gaussian-Bernoulli restricted Boltzmann 
machine (RBM) layer, a learning rate of 5.0e-3 per mini-batch 
for the remaining Bernoulli-Bernoulli RBM layers, and a 
learning rate of 8.0e-3 per mini-batch during fine-tuning. 

To evaluate performance, we used average of maximum F-
measure (AMF), which averages the maximum F-measure 
(harmonic mean of precision and recall) of all queries, and 
then multiplied the result by 100 to obtain a single value as a 
percentage. This calculation is described in detail in [23]. 

4.2. Baseline results of individual system 
Table 2 shows the baseline results obtained from the GMM-

based system for various mixture numbers. Because the 
number of states in SPS-state (1290) differs from that in TRI-
state (30975), with two mixtures per state, the performance 
obtained using TRI-state, 60.06, was significantly better than 
that obtained using SPS-state, 47.56. However, as the number 
of mixture components increased, the performance gap is 
eliminated. 

Table 2: Baseline detection results for different mixture 
numbers per state and different subwords in GMM-based 
system (values shown are AMF for the NTCIR10 STD task). 

 SPS-state TRI-state 
2 mixtures 47.56 60.06 
4 mixtures 62.03 63.12 
8 mixtures 65.11 64.28 

16 mixtures 66.90 63.82 
 

In previous work [23], we reported on subword-based DTW, 
in which text query was transformed into subword sequences 
and search audio database was recognized into subword 
sequences, and then DTW was carried out on those subword 
sequences. In this paper, we propose sequence-to-frame DTW, 
as described in Section 2. The performance of STD using 
sequence-to-frame DTW is better than that of the previous 
subword-based DTW. In fact, sequence-to-frame DTW should 
be adopted as post-processing after a fast indexing or matching 
procedure because it is computationally expensive and time-
consuming [32]. 
Table 3 presents the results obtained for the DNN-based 

system. Addition of more hidden layers in DNN results in 
improved STD performance and convergence at DNN with 
three or five hidden layers. Using FBANK as the input feature 
in the DNN-based STD system is significantly better than 
using MFCC over all STD schemes, by approximately five to 
eight points. Further, for output units, using the subword itself, 
such as triphone and SPS, is far worse than state-level units.  
When the acoustic state is mapped down to its corresponding 
subword label, SPS (430) and triphone (10325), the acoustic 
model space becomes less discriminative for classification and 
the distance is less accurate for DTW. The DNN-based system, 
81.03, is dramatically better than the GMM-based system, 
66.90, which confirms a fact that is already widely known. 

 
Table 3: Comparison of baseline detection results with various 
hidden layers and input/output schemes in DNN-based system. 

Input 
layer Output layer Hidden layer and units 

1×2048 3×2048 5×2048 

MFCC 

TRI 35.06 44.82 45.04 
TRI-state 71.38 74.90 75.24 

TiedTRI-state 71.97 75.28 75.30 
SPS 44.06 48.29 45.58 

SPS-state 71.04 73.28 73.09 

FBANK 

TRI 41.52 51.34 51.76 
TRI-state 75.61 79.94 80.76 

TiedTRI-state 75.97 80.04 79.88 
SPS 46.02 57.53 57.37 

SPS-state 76.62 81.03 79.08 
 
The tree-based state tying approach has been studied and 

developed on insufficient training data with the objective of 
training triphones in GMM-based systems [33-35]. Seide et al. 
[27] and Yu et al. [28] modeled tied triphone-state directly on 
DNN-based ASR systems and reported that using tied 
triphone-state as DNN output nodes is a critical factor in 
achieving the unusual accuracy improvements in [27]. And 
Breslin et al. [13] proposed directed decision trees for 
generating complementary ASR systems. Accordingly, we 
investigated the complementarity between tied triphone-state 
and not-tied triphone-state. As shown in Table 3, there are 
very slight differences in performance between these two 
triphone-states, tied (TiedTRI-state) and not-tied (TRI-state), 
over all schemes.  
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Table 4: Experimental results for combinations of two systems: All DNNs have five hidden layers with 2048 units, except 3HL, which 
has three hidden layers. 
1 System #1 AMF System #2 AMF Performance 

gap 
Correlation 
coefficient 

AMF 
combined 

Performance 
gain (%) 

2 16mix.GMM.SPSstate 66.90 16mix.GMM.TRIstate 63.82 3.08 0.4288 70.11 4.79      
3 FBANK.SPSstate 79.08 

16mix.GMM.SPSstate 66.90 
12.18 0.4710 79.50 0.53      

4 FBANK.TRIstate 80.76 13.86 0.3931 81.76 1.23      
5 FBANK.TiedTRIstate 79.88 12.98 0.3961 78.29 -1.99      
6 FBANK.SPSstate 79.08 

16mix.GMM.TRIstate 63.82 
15.26 0.4281 80.24 1.46      

7 FBANK.TRIstate 80.76 16.94 0.4267 79.53 -1.52      
8 FBANK.TiedTRIstate 79.88 16.06 0.3532 80.00 0.15      
9 3HL.FBANK.SPSstate 81.03 FBANK.SPSstate 79.08 1.95 0.8217 81.07 0.04      
10 3HL.FBANK.TRIstate 79.94 FBANK.TRIstate 80.76 0.82 0.8130 81.14 0.47      
11 3HL.FBANK.TiedTRIstate 80.04 FBANK.TiedTRIstate 79.88 0.16 0.7993 81.06 1.27      
12 MFCC.SPSstate 73.09 FBANK.SPSstate 79.08 5.99 0.7727 78.95 -0.16      
13 MFCC.TRIstate 75.24 FBANK.TRIstate 80.76 5.52 0.7784 80.43 -0.40      
14 MFCC.TiedTRIstate 75.33 FBANK.TiedTRIstate 79.88 4.55 0.7626 80.57 0.86      
15 FBANK.TRIstate 80.76 FBANK.TiedTRIstate 79.88 0.88 0.7380 82.06 1.60      
16 FBANK.SPSstate 79.08 FBANK.TiedTRIstate 79.88 0.80 0.5557 83.57 4.61      
17 FBANK.SPSstate 79.08 FBANK.TRIstate 80.76 1.68 0.5764 84.47 4.59      
 

4.3. Systems combination results 
Table 4 summarizes all results for combinations of two 

systems. To prove that a link exists between complementarity 
and performance, we estimated complementarity by using the 
correlation coefficient of detected terms, which is calculated as 
follows: 

ݎ =
∑ ݔ) − ݕ)(ݔ − (ݕ

ୀଵ

ቀ൫∑ ݔ) − ଶ(ݔ
ୀଵ ൯൫∑ ݕ) − ଶ(ݕ

ୀଵ ൯ቁ
ଵ/ଶ (10) 

where ݔ and ݕ are the arithmetic score means of the detected 
terms of the systems being combined, which is shown in the 
column seven in Table 4. 
In Table 4, the performance gain in column nine are relative 
values, calculated with respect to the better AMF of the 
systems being combined. The second row in Table 4 shows 
that there is a significant performance gain, 4.79%, from the 
combination of two different subword units, SPS and triphone, 
in the GMM-based system. As discussed earlier, the false 
alarms generated by conventional GMM- and DNN-based 
systems are different and has relatively very low correlation 
coefficient, from 0.3532 to 0.4710. This is expected to provide 
the possibility of improving the overall performance by fusing 
the complementary detection results of GMM- and DNN-
based systems. However, as shown from the third to the eighth 
row in Table 4, because of the large performance gap, from 
12.18 to 16.94, all performance gains from the combination of 
GMM- and DNN-based systems are small or negligible, and 
sometimes degraded. From the ninth to the eleventh row, the 
combination is carried out between different hidden layers, 
three layers and five layers in the DNN-based system. As seen 
in the seventh column, the correlation coefficient is relatively 
very high owing to their dependency, which results in a small 
performance gain, from 0.04% to 1.27%. From the twelfth to 
the fourteenth row, the combination is carried out between 
different input features, MFCC and FBANK. Because the 
performance gap is marginally significant, from 4.55 to 5.99 
and the correlation coefficient is also high, approximately 0.77, 
the performance gains are very small. From the fifteenth row, 
owing to their similarity with high correlation coefficient 
(0.7380), the combination of tied triphone-state (TiedTRI-

state) and not-tied triphone-state (TRI-state) leads to a slight 
1.6% performance gain. Finally, for the sixteenth and 
seventeenth rows, because the performance gap is small and 
the correlation coefficient is also comparably low, significant 
performance gains, 4.59% and 4.61%, can be achieved from 
the combination of two subword units, SPS-state and triphone-
state, and SPS-state and tied triphone-state, respectively. 
Finally, we achieved the best performance of 84.47 AMF from 
the combination of SPS-state and triphone-state. In the second, 
sixteenth, and seventeenth rows, both in GMM- and DNN-
based systems, combinations based on different subword units, 
SPS-state and triphone-state, lead to significant performance 
gain. 

5. Conclusions 
In this paper, we proposed a sequence-to-frame DTW and 
investigated combinations of diverse schemes in GMM- and 
DNN-based systems comprising different subwords units and 
acoustic models. We showed that sequence-to-frame DTW 
improves STD performance compared to our previous 
subword-based DTW. Further, the performance of DNN-based 
STD systems, 81.03 AMF, was found to be dramatically better 
than that of GMM-based STD systems, 66.90 AMF. The 
results of system combination experiments confirmed that 
combining two systems that have low correlation coefficient 
and low performance gap leads to high performance gain after 
combination. Although DNN- and GMM-based systems are 
highly heterogeneous, their performance gap is quite large, 
and the performance gain after combination is negligible. 
However, the combination of two heterogeneous subword 
units, triphone and the proposed SPS, lead to significant 
performance improvements both on DNN- and GMM-based 
systems. Thus, we empirically confirmed that the acoustic 
model space using the proposed SPS is complementary to 
widely used triphone.  
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