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Abstract
We explore virtual adversarial training (VAT) applied to neu-
ral higher-order conditional random fields for sequence label-
ing. VAT is a recently introduced regularization method pro-
moting local distributional smoothness: It counteracts the prob-
lem that predictions of many state-of-the-art classifiers are un-
stable to adversarial perturbations. Unlike random noise, ad-
versarial perturbations are minimal and bounded perturbations
that flip the predicted label. We utilize VAT to regularize neural
higher-order factors in conditional random fields. These fac-
tors are for example important for phone classification where
phone representations strongly depend on the context phones.
However, without using VAT for regularization, the use of such
factors was limited as they were prone to overfitting. In exten-
sive experiments, we successfully apply VAT to improve per-
formance on the TIMIT phone classification task. In particular,
we achieve a phone error rate of 13.0%, exceeding the state-of-
the-art performance by a wide margin.
Index Terms: Virtual adversarial training, local distributional
smoothing, deep higher-order factors, neural higher-order con-
ditional random field, phone classification

1. Introduction
In sequence labeling, an output label sequence y is assigned
to some given input sequence x. First-order linear-chain
conditional random fields (LC-CRFs) are established models
for sequence labeling [1], e.g. speech recognition [2]. Due to
several advantages, LC-CRFs often achieve better performance
compared to their generative counterparts [1], i.e. hidden
Markov models (HMMs). Compared to HMMs and first-order
LC-CRFs, higher-order LC-CRFs (HO-LC-CRFs) are more
expressive by allowing for arbitrary input-independent (such
factors depend on the output labels only) [3] and input-
dependent (such factors depend on both the input and output
variables) higher-order factors [4, 5]. That is, both types of
higher-order factors can depend on more than two output labels.
Such factors are for example important for phone classification
where phone representations strongly depend on the context
phones.

Unfortunately, the model complexity of higher-order CRFs
increases exponentially with the number of the output variables
considered in higher order factors [6]. Furthermore, the overfit-
ting problem is more serious. Besides many other approaches
it has been suggested to parametrize the factors in LC-CRFs
by neural models for first-order factors [7, 8, 9, 10, 11] and
for higher-order factors [12, 13]. However, without using an
appropriate regularizer, the use of such factors was limited

because they were prone to overfitting [12, 13]. For instance,
using only ℓ2 regularization, the higher order factors easily
overfit and their expressive power cannot be leveraged.

We address the overfitting problem by applying virtual
adversarial training (VAT) [14] to HO-LC-CRFs. VAT is a
recently introduced regularization method promoting local
distributional smoothness, i.e. it counteracts the problem that
predictions of many state-of-the-art classifiers are vulnerable
to adversarial perturbations. In contrast to random noise,
adversarial perturbations are minimal and bounded pertur-
bations that flip the predicted label. These perturbations are
determined as the solution of an optimization problem. In
contrast to adversarial training (AT) [15], VAT is not using
label information but depends only on the posterior distribution
in the proximity of the input samples. We use VAT to regularize
neural higher-order factors in conditional random fields.

Additionally we used the following two techniques to
improve our results: Firstly, batch normalization [16] which
proved itself to be useful in conjunction with VAT in several
image recognition tasks [14]. Secondly, a novel modeling
approach for neural higher-order factors: A fully-connected
multi-layer sub-network is convolved over several segments
sharing its weights. The resulting hidden activations are
combined by additional hidden layers followed by the output
layer predicting a sub-sequence of labels.

Our main contributions are: (i) We utilize VAT to regu-
larize neural higher-order factors in CRFs. Without using this
novel regularizer, the use of such factors was limited due to
overfitting. (ii) For modeling the neural higher-order factors,
we introduce a multi-layer sub-network convolved over several
segments. The resulting hidden activations are concatenated
and combined by additional hidden layers. This network
(without sequential modeling) is already achieving a phone
error rate (PER) of 16.8% on the TIMIT phone classification
task. (iii) In extensive experiments, we successfully apply VAT
and the novel modeling to improve performance on phone
classification. In particular, we achieve 13.0% PER — the best
reported performance on this task.

This paper is structured as follows: In Section 2 and 3
we recap neural HO-LC-CRFs and VAT, respectively. In
Section 4 we introduce our novel modeling of the higher-order
factors. In Section 5 we evaluate our model on the TIMIT
phone classification task. Finally, we conclude the paper in
Section 6.
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2. Neural Higher-Order Conditional
Random Fields

We briefly recap neural HO-LC-CRFs (NHO-LC-CRFs) for se-
quence labeling [12, 13]. The NHO-LC-CRF defines a condi-
tional distribution

pCRF(y | x) = 1

Z(x)

T∏
t=1

N∏
n=1

Φt(yt−n+1:t;x), (1)

for an output sequence y of length T given an input sequence
x of length T , where Φt(yt−n+1:t;x) are non-negative factors
that can depend on the label sub-sequence yt−n+1:t and the
full input sequence x, and where Z(x) is an input-dependent
normalization computed as

Z(x) =
∑
y

T∏
t=1

N∏
n=1

Φt(yt−n+1:t;x). (2)

The factors in (N − 1)th-order CRFs can depend on label sub-
sequences of maximal span N . All factors Φt(yt−n+1:t;x) are
assumed to be given in log-linear form, i.e.

Φt(yt−n+1:t;x) = exp

(∑
k

wt,n
k fk(yt−n+1:t; t,x)

)
, (3)

where fk(yt−n+1:t; t,x) are arbitrary vector-valued and
(possibly) position-dependent feature functions and wt,n

k are
weights. These feature functions can for example be simple
indicator functions, linear functions, or functions computed
using neural networks as in this work. We distinguish the
following types of feature functions:
n-gram input-independent features. These fea-
tures are observation- and position-independent, i.e.
fk(yt−n+1:t; t,x) = fn(yt−n+1:t). Each entry of the
vectors corresponds to the indicator function of an instance of
a label sub-sequence ai, i.e. fn(yt−n+1:t) = [1(yt−n+1:t =
a1),1(yt−n+1:t = a2), . . .]

T . Typically a1,a2, . . . enumerate
all possible label sub-sequences of length n. For the case
n = 2, these functions are also called transition functions. In
Figure 1, these functions correspond to the factors Φn.
m-n-gram input-dependent MLP features. These fea-
tures generalize local factors to longer label sub-sequences.
In this way, these feature functions can depend on the
label sub-sequence yt−n+1:t and an input sub-sequence
of x. In this paper, we use these features in the form
fm-n(yt−n+1:t; t,x) = [1(yt−n+1:t = a1)g

m(x, t), . . .]T ,
where we use MLP networks for gm(x, t), enabling us to
model complex interactions among the input variables. Hence,
these functions map an input sub-sequence into a new feature
space, i.e. gm(x, t) considers only a contextual window of the
input around position t. Specifically, the hidden activations
of the last layer hm(x, t) of an MLP network are used, i.e.
gm(x, t) = hm(x, t). We call these features m-n-gram MLP
features. They correspond to the factors Φm-n in Figure 1,
assuming that they only depend on input-output sub-sequences.
These features extract an input sub-sequence of length m
aligned and centered with the considered output sub-sequence.

2.1. Parameter Learning

The parameters w = {wt,n
k | ∀k, t, n} are optimized to maxi-

mize the conditional log-likelihood of the training-data, i.e.

F(w) =

J∑
j=1

log pCRF(y(j) | x(j)), (4)
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Figure 1: Factor graph of HO-LC-CRFs using input-dependent
uni-gram factors Φ1-1 and bi-gram transition factors Φ2 (typical)
and additionally 3-gram factors Φ3 as well as input-dependent
factors Φ2-2 and Φ3-3.

where ((x(1),y(1)), . . . , (x(J),y(J))) is a collection of J
input-output sequence pairs drawn i.i.d. from some unknown
data distribution. The partial derivatives of (4) with respect to
the weights wt,n

k = wn
k (parameters are shared across time) can

be computed as described in [3, 4]. We compute the conditional
log-likelihood by computing the forward recursion as described
in Section 2.2. Then we utilize back-propagation [17] and au-
tomatic differentiation [18] as common in neural networks to
compute the gradients and update the weights.

2.2. Forward Algorithm for 2nd-order CRFs

The main ingredient needed for applying the back-propagation
algorithm is the forward recursion and the computation of the
normalization constant. For a given input-output sequence pair
(x,y), the forward recursion is given in terms of quantities
αt(yt−1:t) that are updated according to

αt(yt−1:t) =Φt(yt;x)Φt(yt−1:t;x)× (5)∑
yt−2

Φt(yt−2:t;x)αt−1(yt−2:t−1).

The recursion is initialized as α2(y1:2) =
Φ2(y2;x)Φ1(y1:2;x)Φ1(y1;x). Finally, the normalization
constant can be computed as Z(x) =

∑
yT−1:T

αT (yT−1:T ).
The most probable label sequence can be found by the Viterbi
algorithm generalized to HO-LC-CRFs: The summation in the
forward recursion is replaced by the maximum operation. At
the end of the recursion, we identify the most probable state at
the last position and apply back-tracking. For details and for
time complexities we refer to [3, 4].

2.3. Pre-Training of the m-n-gram MLPs

Before training the CRF, we pre-trained MLP networks for
classifying label sub-sequences given corresponding input sub-
sequences. For this purpose we defined new datasets Dm-n

which, informally, contain all possible sub-sequences of the
training data of length n (on the output side) and the corre-
sponding input sub-sequences of length m. Formally,

Dm-n =
{
(x

(j)
t−n−w+1:t+w,y

(j)
t−n+1:t)

}
j=1...J, t=n...Tj

,

where Tj is the length of the j th input sequence and w = m−n
2

(we assume that m ≥ n and that w is an integer). Whenever a
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subscript to x becomes negative or is larger than the length of
the input sequence, we fill in zeros. For pre-training the m-n
gram MLP networks, we maximized the log conditional like-
lihood

∑
(xr,yr)∈Dm-n

pMLP(yr|xr). Note that we train one
network for each factor Φm-n.

3. Virtual Adversarial Training
For pre-training of the m-n-gram MLP features, we make use
of a novel regularization technique named virtual adversarial
training (VAT) [14]. The simple yet well motivated idea behind
VAT is to promote local smoothness of the posterior distribution
p(y|x) with respect to x, i.e. the posterior distribution should
only vary minimally for small and bounded perturbations of the
input x. By incorporating this idea into the training of the m-n-
gram MLP features, the corresponding classifiers (and thus also
the MLP features) become more robust and, as substantiated in
experiments, generalize better.

We now introduce VAT formally. We compute the adver-
sarial perturbation δr by maximizing the Kullback-Leibler di-
vergence KL (·||·) of the posterior distribution for unperturbed
and perturbed inputs, i.e.

δr = arg max
||δ||≤ϵ

KL (p(y|xr)||p(y|xr + δ)) , (6)

where ϵ > 0 limits the maximal perturbation and p = pMLP.
Informally, δr is a minimal and bounded perturbation, i.e. the
perturbed input xr + δ is within a radius of ϵ around xr

and maximally changes the posterior distribution. The smaller
KL (p(y|xr)||p(y|xr + δr)), the smoother is the posterior dis-
tribution around xr . Now we intend to use the Kullback-Leibler
divergence as regularizer. Thus instead of maximizing the con-
ditional likelihood

∑
r log p(y

r|xr), where r is the index of
the rth training example in Dm-n, we maximize the regularized
objective∑

r

log p(yr|xr)− λ
∑
r

KL (p(y|xr)||p(y|xr + δr) , (7)

where λ is a trade-off parameter. Optimization of (6) and (7)
can be performed efficiently [14].

VAT has two hyper-parameters that need to be adjusted, the
trade-off parameter λ and the radius ϵ. The trade-off parameter
weights the (competing) goals of maximizing likelihood with
the goal of having smooth posteriors around the training sam-
ples. The radius ϵ specifies the range within which the posterior
should be smooth around the training data.

Note that the term KL (p(y|xr)||p(y|xr + δr) in (7) does
not depend on the true label of xr but only on the distribution
over the labels. This makes VAT applicable in semi-supervised
scenarios, e.g. we could basically make use of untranscribed
utterances for improved pre-training of the m-n-gram MLPs.
In contrast to VAT, AT makes use of label information as fol-
lows: Instead of identifying a local perturbation that maximally
changes the posterior distribution in terms of Kullback-Leibler
divergence, it identifies a local perturbation that minimizes the
posterior probability of the correct label, i.e.

δr,AT = arg min
||δ||≤ϵ

p(yr|xr + δ). (8)

Furthermore, the objective that is maximized for AT is∑
r

log p(yr|xr) + λ
∑
r

log p(yr|xr + δr,AT). (9)

4. Convolution over Segments
We introduce a slight modification to the network structure of
the m-n-gram MLP networks. This modification can be seen
as convolution along the segments of the input sequence x,
i.e. a sub-network is processing the input vectors at segment
level and acts as a filter. The output of the sub-networks
of m input segments is further passed through one or more
hidden layers and, finally, mapped to the posterior of the output
label sub-sequence of length n by a softmax layer. A similar
structure has been successfully used for phone recognition [19].
However, in [19], the convolution has been applied on frame
level and it was not used for neural higher-order factors.

5. Experiments
We evaluated the performance of the proposed models on the
TIMIT phone classification task.

5.1. TIMIT Data Set

The TIMIT data set [20] contains recordings of 5.4 hours of
English speech from 8 major dialect regions of the United
States. The recordings were manually segmented at phone level.
We use this segmentation for phone classification. Note that
phone classification should not be confused with phone recog-
nition [21] where no segmentation is provided. We collapsed
the original 61 phones into 39 phones. All frames of MFCC,
delta and double-delta coefficients of a phonetic segment are
mapped into one feature vector. Details on pre-processing and
data set are presented in [22]. The task is, given an utterance
and a corresponding segmentation, to infer the phone within ev-
ery segment. The development set is used for parameter tuning.
The performance measure is the phone error rate (PER) in [%].

5.2. Experimental Setup

For training the neural networks we used the ADAM opti-
mizer [23] with a batch size of 100, an initial learning rate of
0.002, learning rate decay of 0.9 and no ℓ2-norm regularizer for
all models with batch normalization and for the baseline net-
works (MLP+L2) we used 10, 0.0001, 0.9 and 0.0001, respec-
tively. In both cases, the number of epochs was 100. Optimiza-
tion of the HO-LC-CRF weights was in all cases performed us-
ing stochastic gradient ascent using a batch size of one sample,
an initial learning rate of 0.001, learning rate decay of 0.998, a
momentum of 0.0001 and a maximal number of epochs of 500.
An ℓ2-norm regularizer on the model weights was used with a
fixed regularization factor of 0.001. We utilized early stopping
based on the development data set. Further, the last hidden ac-
tivations of the pre-trained networks were normalized to zero
mean and unit standard deviation.

5.3. Labeling Results for Proposed Models

Network Architectures and Regularizers. We trained MLP
networks for several m-n-gram settings, i.e for m input seg-
ments and label sub-sequence of length n. The activation func-
tions in the hidden layers and output layer are rectifier and soft-
max functions, respectively. In the following the numbers of
hidden units per hidden layer is denoted by a separating hyphen.
In all cases we trained the following network sizes {150, 500-
150, 500-300-150, 500-300-200-150, 500-400-300-200-150}.
We compared objective functions with three different regular-
izers: ℓ2-norm (L2), adversarial training (AT) and virtual ad-

2758



Table 1: TIMIT Phone Classification: Labeling results for (top) isolated phone classification using m = 3 input segments and one
output label n = 1 and (bottom) for NHO-LC-CRFs. Performance measure: Phone error rate (PER) in [%].

Neural Network MLP+L2 MLP-BN+AT MLP-BN+VAT MLPCS-BN+VAT
Hidden Layer Sizes valid test valid test valid test valid test

150 21.56 22.37 22.74 23.04 20.82 21.71 18.09 18.34
500-150 19.45 20.16 17.90 18.91 17.92 18.16 16.69 17.39
500-300-150 19.96 20.44 18.06 18.50 18.11 18.79 16.78 17.12
500-300-200-150 20.92 21.74 18.00 18.27 17.81 18.63 16.39 16.80
500-400-300-200-150 20.90 21.65 18.48 19.42 18.16 18.54 16.70 17.43

NHO-LC-CRF MLP+L2 MLP-BN+AT MLP-BN+VAT MLPCS-BN+VAT
Higher-Order Factors valid test valid test valid test valid test

Φ1,Φ2,Φ1-1 19.83 20.55 20.40 21.21 19.66 20.32 - -
+Φ3-1 17.43 18.16 16.98 17.42 17.08 17.40 15.47 16.13
+Φ2-2 15.62 16.46 14.90 15.75 15.07 15.63 14.62 14.91
+Φ4-2 15.26 15.79 14.29 14.72 14.47 14.88 14.00 14.30
+Φ3,Φ3-3 14.59 15.12 13.72 14.21 13.93 14.31 13.50 13.21
+Φ5-3 14.66 14.81 13.68 14.02 13.78 13.90 13.22 13.04

versarial training (VAT) based on finite difference approxima-
tion. After preliminary experiments we fixed the optimal per-
turbation strength ϵ to 2.1 and the trade-off parameter λ to 1.0
for AT and VAT. We used three different neural network archi-
tectures: Multilayer-perceptron network (MLP), MLP network
with batch normalization (MLP-BN) and MLP with convolution
over segments and with batch normalization (MLPCS-BN). In
the case of MLPCS-BN we used the network sizes from above
for the sub-networks, and we added an additional hidden layer
with 150 hidden units combining the concatenated outputs of
the sub-networks.
Isolated Classification. In Table 1 top panel we report labeling
results for isolated phone classification of the 3-1-gram setting
for the mentioned hidden layer sizes and for four different net-
work architectures and regularizers: MLP+L2, MLP-BN+AT,
MLP-BN+VAT and MLPCS-BN+VAT. The standard MLP net-
work with ℓ2-norm regularizer (MLP+L2) starts to overfit for
more than two hidden layers and gives the poorest results. In-
cluding BN+AT and BN+VAT improved the PER, significantly.
The best PER result we achieved with a single network was
16.8% including additional convolutions over segments in the
MLPs.
Sequence Labeling. As described in Section 2.3, we discrimi-
natively pre-trained m-n-gram MLP factors. After pre-training,
we normalized the activations of the last hidden layer of the
MLP networks to zero mean and unit variance and used them
as features to train NHO-LC-CRFs. For training of NHO-LC-
CRFs we considered again four different configurations of the
neural network architectures and regularizers: MLP+L2, MLP-
BN+AT, MLP-BN+VAT and MLPCS-BN+VAT. We chose the
best hidden layer sizes of the corresponding m-n-gram MLP
factors based on the validation PER of the single networks. In-
crementally, we included more m-n-gram MLP factors to the
NHO-LC-CRFs. In Table 1 bottom panel we report labeling
results. Additional higher-order factors (plus sign indicates ad-
ditional factors to the model of previous line) improved consis-
tently the PER. As for the single networks BN+AT improved
the results as well as BN+VAT. We achieved our best PER re-
sult of 13.0% including additional convolutions over segments
in the neural higher-order factors (MLPCS-BN+VAT).
Summary. Finally, we compared our best result to other state-

of-the-art methods based on MFCC features as shown in Ta-
ble 2 and to deep scattering spectrum [24], a method based
on more advanced preprocessing which in combination with
support vector machines achieves state-of-the-art performance
of 15.9%. The NHO-LC-CRF using standard MFCC features
achieves a performance of 15.8%. In Table 1 bottom panel we
improved this baseline and achieved a performance of 14.8% by
using ADAM optimizer [23] and including additional higher-
order factors (MLP+L2). NHO-LC-CRF including BN, VAT
and convolution over segments (MLPCS-BN+VAT) achieved
13.0% PER — the best reported performance on this task.

Table 2: TIMIT Phone Classification: Summary of labeling re-
sults. Performance measure: Phone error rate (PER) in [%].

Model PER [%]

GMMs ML [25] 25.9
HCRFs [26] 21.5
Large-Margin GMM [25] 21.1
Heterogeneous Measurements [22] 21.0
CNF [12] 20.7
NHO-LC-CRF [13] 17.7
Deep Scattering Spectrum [24] 15.9
NHO-LC-CRF (disc. pre-training) [12] 15.8

Proposed models in this paper:
MLPCS-BN+VAT (Isolated) 16.8
NHO-LC-CRF + MLP-BN+VAT 13.9
NHO-LC-CRF + MLPCS-BN+VAT 13.0

6. Conclusion
We utilized virtual adversarial training to regularize the neu-
ral higher-order factors in HO-LC-CRFs for sequence labeling.
Without using this novel regularization, the use of such factors
was limited due to overfitting. Furthermore, we introduced a
novel approach for modeling higher-order factors which can be
seen as convolution along the segments of the input sequence.
In experiments, we demonstrated excellent performance of our
approach on the TIMIT phone classification task, reporting a
new state-of-the-art performance of 13.0% phone error rate.
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