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Abstract
We consider the phenomenon of postlexical deletion in fast
spontaneously spoken isiZulu speech and its implication for
automatic speech recognition (ASR). Analysis of hand-crafted
transcripts of fast spontaneous speech recorded from broadcast
media indicates that postlexical deletion, especially of vowels,
is common in isiZulu. We show that ASR performance can
be increased by inclusion of pronunciation variants that model
such deletions. We also apply a sequence modelling approach
normally used for grapheme-to-phoneme (G2P) conversion to
generate orthography containing synthetic deletions. These
synthetically generated contacted words are subsequently used
to generate accompanying pronunciations using conventional
G2P conversion. We evaluate an ASR system using these syn-
thetically generated pronunciations, and compare it to a baseline
system without such variants as well as an oracle system. Aug-
mentation with synthetically generated pronunciations leads to
an absolute improvement in word error rate (WER) of 2.36%
relative to the baseline. Furthermore, the augmented system
performs almost as well as the oracle system, with an absolute
difference in WER of 0.38%.
Index Terms: spontaneous speech, pronunciation alternatives,
vowel deletion, elision, ASR

1. Introduction
IsiZulu is one of 11 official languages in South Africa. Al-
though a small number of speech corpora are available for this
language, the issue of fast spontaneously spoken isiZulu speech
has not been addressed. Fast, spontaneous speech often deviates
from the regular phonotactical constraints, and such deviations
are observed in a speech corpus we have compiled from South
African soap opera broadcasts.

One may distinguish between lexical and postlexical
phonological phenomena. The former typically apply to words
in isolation, as they appear in the lexicon. The latter apply to
words in the context of a sentence, for instance where the pro-
nunciation of a word is influenced by adjacent words. Postlexi-
cal rules are commonly found in text-to-speech systems, to en-
sure natural sounding reproduction of words in context.

Fast, spontaneous speech often exhibits optional deletions
as a postlexical phenomenon. Such deletions may take the fol-
lowing forms:

• aphesis, dropping initial sounds from a word, e.g. ’cept for
accept or except;

• apocope, dropping one or more sounds from the end of a
word, e.g. Vince for Vincent; and

• syncope, dropping sounds internal to the word, e.g. fo’c’s’le
for forecastle is a classic example.

Unstressed vowels are most commonly deleted. These
postlexical deletions occur as a matter of course in fast spon-
taneously spoken isiZulu, and are witnessed in our corpus.

The effect of postlexical deletion on automatic speech
recognition (ASR) performance with fast spoken isiZulu has
not been investigated before. We perform such an investiga-
tion. Futhermore, we investigate the modelling of postlexical
deletion with a sequence modelling tool. The sequence models
are used to predict contracted orthographic alternatives which
are better matched to fast, spontaneous speech, leading to im-
proved ASR performance.

Section 2 presents background information, followed by a
description of the isiZulu speech corpus in Section 3. An anal-
ysis of postlexical deletion is discussed in Section 4, followed
by deletion modelling and prediction in Section 5. Section 6
discusses the experimental ASR setup with results in Section 7.
Section 8 discusses the results and concludes the paper.

2. Background
Although the occurrence of postlexical deletion has received
very little attention in the literature, it was already mentioned
in [1], published in 1857. This text describes the use of apos-
trophes to indicate deletions in spoken isiZulu. More recently,
vowel deletions are discussed in a formally structured lexical
context, when morphemes are agglutinated to form compound
words [2]. In contrast, our data exhibits apocope and syncope,
where sounds are deleted as a result of fast speech. The most ex-
plicit mention of the phenomenon was found in [3, p. 156-157],
where it is said that “in fast spoken speech only, Post-Lexical
Deletion . . . appl[ies] optionally.”

IsiZulu predominantly follows a /CV/ syllable structure,
e.g. uyakuthanda with /V/CV/CV/CV/CV/ and isikole with
/V/CV/CV/CV/. In fast speech, unstressed vowels may be
deleted, causing a succession of consonants, e.g. uyakuthanda
and isikole pronounced as uyak’thand’ and is’kol’, violating the
regular syllable pattern.

Contracted word forms, using the apostrophe as in our ex-
amples above, are used in isiZulu poetry as a literary device [4].
Postlexical deletion is both speaker and domain dependent, and
the tone and environment of a conversation can dictate its oc-
currence, e.g. a formal discourse versus informal conversation.

The agglutinative morphology of isiZulu presents another
set of challenges not specifically addressed in this paper. It re-
lates to the vocabulary growing without bound as the size of the
data set grows. This also happens in other agglutinative lan-
guages such as Finnish, Estonian and Turkish [5]. Agglutina-
tion results in high language model (LM) perplexities compared
to languages with analytic properties.
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Table 1: Corpus training and test sets, indicating spk: (speaker
count), wtok: (word token count), wtyp: (word type count),
utts: (utterance count) and dur: (duration).

Set spk wtok wtyp utts dur
train 50 11k 4.4k 3.4k 1.2h
test 4 2.7k 1.5k 1k 20m

Table 2: Counts of graphemes deleted to yield contracted word
forms in the training transcriptions.

count graphemes count graphemes
1842 i 15 ke
816 a 12 k,in
643 e 7 w,wu
611 u 4 wa
231 o 2 ia,ne,to,be
61 ku 1 thi,khu,kho,ing,yo,si,to,lu
18 ow we,phuku,ma,ile,mi,n,deni

3. Corpus Description
Our corpus contains 1.5 hours of spontaneously spoken mono-
lingual speech recorded from South African soap opera broad-
casts, and forms part of an on-going transcription effort. First
language isiZulu speakers manually transcribed all speech or-
thographically. Word labels include apostrophes indicating
deletions in utterances, together with the canonical spelling. For
example, the sentence:
Ngiyabonga futhi ukuthi unakekele uThandeka,
when uttered at speed, is transcribed as:
Ng’yabonga futh’ ukuth’ unakekel’ uThandeka,
with apostrophes indicating the deletion of ‘i’, ‘i’, ‘i’ and ‘e’,
respectively.

Table 1 shows the corpus size and counts. The allocation
of a development set is omitted to avoid a further reduction
in training set size. Therefore, the test set is used to optimise
recognition parameters in ASR experiments. No speaker over-
lap exists between the training and test sets.

The speech rate is calculated at 18.45 phones/s from au-
tomatically generated phoneme alignments. This is more than
twice as fast as the 9.04 phones/s speech rate calculated for the
prompted isiZulu speech in the NCHLT corpus [6].

4. Analysis of Deletions
Table 2 shows the counts of graphemes deleted in the training
transcriptions. It is clear that vowels are deleted more often than
consonants. Grapheme ‘i’ is deleted most, more than twice as
often as ‘a’, and about three times as often as ‘e’ and ‘u’.

Figure 1 shows counts of start positions of deletions in the
canonical forms of the affected words. Positions 0, 1, . . . , i
denote the first, second, to (i + 1)th letter positions from the
beginning of a word, while positions −1, −2, . . . , −i denote
the last, second to last, to ith to last letter positions in a word,
respectively. We see most deletions occur at the end of words
(position −1), with only 8 deletions occurring at the start of
words (position 0). The second largest number of deletions oc-
cur at the third letter from the word beginning. This trend is also
illustrated by the transcription examples in Sections 1, 3 and 5.

5. Automatic Prediction of Deletions
We use the Sequitur G2P sequence modelling tool [10] to model
and predict the occurrence of postlexical deletion. We first anal-
yse prediction errors in a cross-validation framework performed
on an isolated list of contracted words. Thereafter, we train and
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Figure 1: Counts of deletion positions.

Table 3: Analysis of sequence model predicted deletions using
isolated contracted word list (Section 5.1).

Model order
1 2 3 4

1 % word errors 76.72 51.22 53.77 57.23
2 % correct dels 41.35 82.26 83.27 77.36
3 ratio dels gen vs. ref 0.79 1.20 1.23 1.15
4 % words excess dels 17.76 31.49 34.76 29.00
5 % words lack dels 42.63 10.80 9.07 13.68
6 % words zero dels 33.70 6.43 5.42 8.45

evaluate sequence modelling on the complete corpus, investi-
gating two configurations: (i) word internal context training,
evaluated on the corpus test set; and (ii) full sentence training
with cross-word context, evaluated on the corpus test set. Fi-
nally, we describe the process of creating synthetically gener-
ated contracted pronunciations for use in an ASR pronunciation
dictionary.

5.1. Cross-validation analysis on isolated contracted words

A list of contracted words is extracted from the corpus transcrip-
tions, together with the respective canonical spelling, compris-
ing 2097 unique entries. Whitespaces are inserted to separate
the graphemes of the contracted reference spellings, yielding a
graphemic dictionary with entries of the form:

akakujabeleli a k a k ’ j a b ’ l e l ’

The list is now split randomly into 10 approximately equal
partitions. In a 10-fold cross-validation framework, sequence
models are trained on 9 partitions, reserving the 10th for test-
ing. The model order is increased step by step during train-
ing. Trained sequence models are applied to each canonical
spelling in the held-out test set to produce a hypothesised con-
tracted spelling. The output hypotheses are scored against the
reference contracted spellings to calculate error rates.

Table 3 reflects accuracy and error statistics, averaged over
the ten folds, for model orders 1 to 4. We note that the bal-
ance between best accuracy and smallest number of errors lies
somewhere between orders 2 and 3. Order 2 generates the most
correctly contacted word forms (row 1), while order 3 is able to
place deletions at the correct positions most reliably (row 2).

Row 3 presents a ratio giving the total number of predicted
versus reference deletions. A ratio of 1.0 represents an equal
number of predicted and reference deletions. Order 1 on av-
erage predicts too few deletions, while orders 2 to 4 are too
generous.
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Table 4: Word and sentence error rates for sequence model pre-
dicted transcriptions evaluated against reference transcriptions.

Order SLWI SLXW
WER SER WER SER

1 36.0 62.9 36.0 62.9
2 37.5 64.2 35.5 61.3
3 35.0 64.5 23.9 48.7
4 42.0 70.8 33.8 55.6

The errors shown in rows 4, 5, and 6, indicate the percent-
age of words containing an excess of, a lack of, and zero dele-
tions compared to their reference words, respectively. Order 1
has the fewest excess errors due to fewer predicted deletions
(row 4), while order 3 has the fewest errors for predicted words
which both lack (row 5) and contain zero (row 6) deletions.

Considering rows 1, 2 and 4, we confirm that the high accu-
racy of correctly predicted deletions of order 3 can be attributed
to the generous allocation of deletions, but this also increases
the total word errors compared to order 2, since excessive dele-
tion cause more word errors.

5.2. Corpus sentence level word internal context (SLWI)

We now evaluate deletion prediction at sentence level for the
complete corpus test set, i.e. not just the contracted forms. Se-
quence model training is performed at word level (no cross-
word context) using all word types in the corpus training set
transcriptions. The graphemic training dictionary contains tran-
scribed words with and without deletions, e.g.:
akakujabeleli a k a k u j a b u l e l i
akakujabeleli a k a k ’ j a b ’ l e l ’
akudonse a k u d o n s e
akudonse a k ’ d o n s e

Table 4 shows word and sentence error rates (WER, SER)
of the predicted transcriptions when evaluated against the cor-
pus test set sentences (columns SLWI). The first order model
fails to predict any deletions at all, and thus reflects the actual
percentage of words in the test set containing deletions (36%).
The SER increases as model order increases, as a result of the
SER being a coarse-grained evaluation metric. A singly mis-
placed deletion causes a complete sentence error. Sentence er-
rors as a result increase as deletions are predicted too liberally.

5.3. Corpus sentence level cross-word context (SLXW)

In an effort to improve the performance of the sequence models,
and to test whether deletions are influenced by graphemes from
adjacent words, we extend the context used by these models
by performing sequence model training on full sentences of the
complete corpus training set. Hence, now the graphemic train-
ing dictionary consists of full sentences and their graphemic
transcriptions. Word boundaries are labeled with an ‘@’, en-
abling sequence models to span word boundaries, e.g.:
ngicela@ungilalele n g ’ c e l ’ @ u n g ’ l a l e l e

The cross-word sequence models operate at grapheme level and
should not be confused with the concept of cross-word context-
dependent phonemes as used in ASR.

Deletion prediction is performed on full sentence input
rather than on words in isolation. Using this configuration, se-
quence models with order 3 gave the lowest WER of 23.9%
(see Table 4). The improvements in WERs compared to the
SLWI experiments, indicate that useful information exists at
cross-word boundaries, and is learned by the sequence models.
Manual side-by-side inspection of the generated output of SLWI
and SLXW (orders 3), indicates that the majority of improve-
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Figure 2: Process of training sequence models and generating
contracted pronunciations via deletion prediction.

ments occur at the ends of words. This also confirms that the
graphemes located at the beginning of a word, influence dele-
tions that may occur at the end of the preceding word.

5.4. Synthetically generated pronunciations

Finally, we use model SLXW order 3 to predict deletions, re-
sulting in synthesised contracted forms from which pronunci-
ations can be generated. This process and its resources are
depicted in Figure 2. Training set sentences with canonical
orthography are passed through the sequence model genera-
tor, producing orthographic transcriptions containing predicted
deletions. Note that not every input word necessarily has a
transformed output variant. Even though we are using a closed
vocabulary, we opt to generate the predicted transcriptions from
the training set vocabulary only. This avoids an optimistic
bias towards the transcribed test set words containing dele-
tions. Contracted pronunciations used in the ASR pronuncia-
tion dictionary are generated only from the predicted contracted
words in the generated transcriptions using the isiZulu NCHLT
grapheme-to-phoneme (G2P) tool [11]. Canonical pronuncia-
tions are used for any out-of-dictionary test set words absent
from the training set.

6. Experimental ASR Setup
The ASR system is built using HTK [12]. The system is simi-
lar to the monolingual ASR system described in [13]. Features
used are 13 MFCCs, with velocity and acceleration included,
yielding 39-dimensional vectors, with cepstral mean normali-
sation applied per utterance. Acoustic models consist of stan-
dard 3-state left-to-right hidden Markov models as cross-word
triphones. Decision tree state clustering is performed. Acous-
tic models are trained and subsequently remain unchanged be-
tween recognition experiments below. System parameters are
optimised on the corpus test set, for reasons given in Section 3.
A closed vocabulary, consisting of the training and test set vo-
cabularies, is used throughout.

The pronunciation dictionary always uses canonical pro-
nunciations for canonical spellings. Three configurations are
evaluated for words containing deletions.

• Contracted pronunciations (p-contr) are derived from the
manually transcribed words with deletions using G2P, using
one pronunciation per spelling.

• Canonical pronunciations (p-canon) are full word pronunci-
ations without deletions, sourced from trusted pronunciation
dictionaries or generated from canonical spellings with G2P,
using one pronunciation per spelling.

• Synthetically generated pronunciations (p-gen) are generated
via the process described in Section 5.4.

The SRILM tools [14] are used to train bigram LMs. Three
LM configurations are used in our experiments.

• LM1 is trained on the training set transcriptions contain-
ing orthography with and without deletions. The perplexity
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Table 5: WERs for the ASR system configurations. Trans.:
transcriptions either contracted (contr) or canonical (canon),
Pron.dict: pronunciation dictionary, Rec.par: recognition pa-
rameters either optimised (optm) or as baseline system A (as
A). Other abbreviations are defined in Section 6.

Trans. Pron.dict LM Rec.par WER
A contr p-contr LM1 optm 85.00
B canon p-canon LM2 as A 83.53
B.1 canon p-canon LM3 as A 81.05
B.2 canon p-canon LM3 optm 80.77
C canon p-canon, p-contr LM2 as A 80.85
C.1 canon p-canon, p-contr LM3 as A 78.30
C.2 canon p-canon, p-contr LM3 optm 78.03
D canon p-canon, p-gen LM2 as A 81.37
D.1 canon p-canon, p-gen LM3 as A 78.86
D.2 canon p-canon, p-gen LM3 optm 78.41

(PPL) evaluated on the test set is 2400, with vocabulary size
of 5258. We note that words containing deletions contribute
to increased PPL.

• LM2 is trained on the training set transcriptions containing
only canonical orthography. A lower PPL of 1404.5 is ob-
tained when evaluated on the test set, with vocabulary size
of 4673, resulting from greater consistency of the canonical
word forms.

• LM3 is an interpolation of LM2 with an LM trained on 100k
isiZulu web text sentences. We improve LM2 by LM inter-
polation, since canonical word forms are used. The interpo-
lation factor is optimised on ASR System B and used in all
system configurations. PPL is reduced to 716.5, with vocab-
ulary size of 4673.

A number of ASR system configurations are investigated.

• System A is a first baseline system, where manually tran-
scribed contracted spellings are used. As a baseline, this is
the rawest form of the corpus. The p-contr pronunciations
are used together with LM1 which supports contracted tran-
scriptions.

• System B is second baseline which uses canonical spellings
only. B employs a cleaner representation of the corpus com-
pared to A. The p-canon pronunciations are used, together
with LM2 and LM3, which support canonical spellings.

• System C uses canonical spellings only. The pronunciation
dictionary includes p-canon and p-contr, i.e. all transcribed
pronunciation variants, both canonical and with deletions.
Both LM2 and LM3 are evaluated.

• System D uses canonical spellings only. The pronunciation
dictionary includes p-canon and p-gen, i.e. both canoni-
cal pronunciations and synthetically generated pronunciation
variant as generated by the sequence models. Both LM2 and
LM3 are evaluated.

The numeral suffix .1 appended to the system label, e.g.
B.1, indicates that LM3 was used and recognition parameters
are similar to those of the baseline system. Numeral suffix .2
indicates that further recognition parameter optimisation was
performed to achieve an optimal WER for the particular system.
This enables direct comparison as to which system component
led to a change in WER.

7. Results
Table 5 shows ASR results for the various system configura-
tions. All WERs are very high. This is due to the small size of
the corpus, and also to the difficult nature of the speech (fast and
spontanous). For comparative purposes, we note that isiZulu

ASR systems trained on read or prompted speech, have been
reported to yield WERs of 62.99% (17 hours) [7] and 33.6%
(50 hours) [6]. More in line with our results, other researchers
have been met with similarly high error rates, such as the WERs
of 70-76% and 61.2% achieved on the respective 10-hour and
80-hour portions of the Zulu contribution to the Babel corpora
[8, 9], which consists of conversational speech.

The associated WER for System A is the highest, as is to
be expected, since LM1 contains word forms with deletions
which increase perplexity. System B displays an absolute im-
provement of 1.47% and uses LM2, which includes exclusively
canonical word forms. Pronunciations are strictly canonical,
and as a result may be suboptimal. In particular, deletions are
not modelled in the p-canon pronunciations. System C im-
proves on System B by 2.68%, which is exclusively attributed
to the addition of pronunciations that model deletions. The
incorporation of LM3 and further recognition parameter opti-
misation, results in the lowest WER of 78.03%; a nearly 7%
absolute improvement compared to System A. We note that
System C is an oracle experiment, since manually transcribed
test set vocabulary pronunciations are modelled in the pronun-
ciation dictionary. We therefore regard the results from Sys-
tems C, C.1 and C.2 to be optimistic. Finally, System D uses
pronunciations generated synthetically by the deletion predic-
tion sequence modelling process shown in Figure 2. The WER
presents a 2.16% absolute improvement over System B, and a
2.36% absolute improvement when comparing the parameter
optimised systems of B.2 and D.2. Furthermore, the optimistic
performance of System C.2 is only 0.38% absolute better than
the synthetic System D.2.

8. Discussion and Conclusion
We have established the prevalence of postlexical deletion in
fast spontaneously spoken isiZulu. We have further shown that
the inclusion of pronunciation alternatives modelling postlex-
ical deletion in isiZulu leads to improved ASR performance.
This stands in contrast to experiences in some cases of ASR,
that the use of alternative pronunciations comes at a cost of
increasing confusion during speech recognition, and therefore
may lead to deteriorated performance. Besides the successful
modelling of pronunciations containing deletions from man-
ual orthographic transcriptions, we have shown that the phe-
nomenon of postlexical deletion itself can be modelled statisti-
cally. Sequence models can be used to generate synthetically
contracted forms of words to model postlexical deletion. These
contracted forms can in turn be used to derive pronunciations
using G2P. The inclusion of such synthetically generated pro-
nunciations is demonstrated to lead to improved recognition
performance.

Future work include the postlexical deletion modelling
using decision trees, applying the modelling of postlexical
deletion to other spontaneous speech corpora to establish possi-
ble ASR performance improvements, and the investigation into
using an isiZulu morphological decomposer to assess whether
language modelling at morpheme level will lead to further
improvements in ASR performance.
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