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Abstract

In this paper, we propose a simple speaker normalization for
deep neural network (DNN) using i-vectors, the state-of-the-art
technique for speaker recognition, for automatic speech recog-
nition. There have been already many techniques using i-
vectors for speaker adaptation or speaker variability reduction
of DNN acoustic models. However, in order to add the speaker
information into the acoustic feature, most of those techniques
have to train a large number of parameters while dimensionality
of the i-vector is quite small. We tried to apply a component-
wise shift to the acoustic features by linearly transformed i-
vector, and then achieved the better performance than typical
approaches. On top of that, we propose to modify this struc-
ture to adapt each frame of the features, reducing the number
of parameters. Experiments were conducted on the TED-LIUM
release-1 corpus, and the proposed method showed some per-
formance gains.

Index Terms: speaker normalization, speaker adaptation, i-
vector, deep neural networks, speech recognition

1. Introduction

In the last few years, deep neural networks (DNN) based acous-
tic model defeated the conventional acoustic modelling ap-
proach, Gaussian mixture model (GMM), and achieved a domi-
nant position in automatic speech recognition (ASR) task. DNN
provides more discriminative feature representation than gener-
ative one in GMM, whereupon DNN can extract phonetic in-
formation effectively with enough computing power. In other
words, a DNN-based acoustic model is more robust on speaker
variability and also provides better speech recognition perfor-
mance than an GMM-based one. Unfortunately, because of the
robustness, it is hard to propose an effective speaker adaptation
technique in spite of their necessity.

Size of DNN-based model is another obstacle to finding
adaptation technique. The number of parameters of DNN is
naturally high since nonlinear projection to high dimensionality
is used to derive high recognition accuracy and speaker invari-
ability in DNN. On the other hand, the number of one speaker’s
utterances to adapt the model is usually very small. Therefore
speaker adaptation of DNN remains as a difficult task and plenty
of techniques have been proposed to overcome this difficulty.

According to [1], these techniques can be grouped into
3 categories: Linear transformation, Conservative training,
and Speaker-specific subspace method. Linear transformation
might be the simplest and most popular way to adapt the DNN.
For one certain layer of speaker-independent DNN, linear trans-
formation is applied on top of that layer with the speeches of
one speaker [2, 3, 4]. Conservative training is to keep exist-
ing parameters unchanged when you want to adapt entire model
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or part of that, for example the Maximum A Posteriori (MAP)
adaptation of GMM model. L2-norm regularization [5] and
Kullback-Leibler divergence (KLD) regularization [6] are well-
known techniques in this category. Recently it was proposed
to apply the MAP to the DNN model after the dimensionality
reduction using the Singular Value Decomposition (SVD) [7].
In this context, we want to mention Learning Hidden Unit Con-
tribution (LHUC) [8] which is also train the networks’ weights
speaker-dependently. Lastly, subspace method is the way to ex-
tend the input feature space by additional speaker-specific sub-
space. The most representative way of the subspace method is
to concatenate the acoustic feature with pre-generated i-vector
[9, 10, 11].

I-vector (identity vector) is an approach that have achieved
the state-of-the-art performance of speaker recognition [12, 13].
In that task, one can compare an i-vector with several others by
appropriate measure such as cosine distance or PLDA scoring,
and identify or verify a speaker’s identity. It implies that the
i-vector extracts and encodes the speaker’s discriminative in-
formation intensively in relatively small dimension. Therefore,
in subspace method of speech adaptation, the robustness on
speaker variability is enhanced by concatenating the i-vectors
to the acoustic feature vectors. It is, in other words, equal to
the speaker normalization, modifying the feature representation
based on the speaker information [14, 15]. Many techniques
were proposed for speaker normalizations using i-vector aside
from the i-vector augmentation.

Garimella ef al. proposed to use the i-vector generated
from HMM-GMM, not UBM-GMM, and proposed a structure
in which output vector of i-vector DNN, not i-vector itself, is
augmented to the acoustic feature [16]. One more remarkable
point is that the authors applied exponentially decaying weights
to the utterances used in i-vector extractor, for i-vectors to re-
flect recent information (they called it causal i-vector.). In Car-
dinal et al.’s paper, i-vectors were concatenated to the bottle-
neck feature from 2-stage large DNN, demonstrating the perfor-
mance improvements [17]. Miao et al. proposed two speaker
adaptive training methods using i-vector, named AdaptNN and
iVecNN [18, 19]. AdaptNN has additional layers below the reg-
ular DNN to adapt the acoustic feature, and the i-vectors are
used as a bias in each adaptation layer. iVecNN is the multi-
layer network of the i-vector as input and feature-sized vector
as output, and the output vector is summed to the acoustic vec-
tor as a speaker-specific linear shift on the feature space. We
got inspiration from the iVecNN, and our proposed method will
to be explained later.

This paper is organized as follows. A brief explanations of
i-vector are in Section 2, and Section 3 gives our simple DNN
normalization method and experiment results with our experi-
mental setup. Further structure named one-frame shifting are
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stated in Section 4, and this paper concludes with future re-
search plan in Section 5.

2. I-vector

The i-vector is introduced and widely used in speaker recog-
nition task since each speaker’s characteristics are effectively
extracted as relatively low-dimensional vector. The reason
we use the phrase “relatively low-dimensional” is that many
speaker recognition techniques use very high-dimensional vec-
tor called supervector, which is a concatenated vector of a
speaker’s GMM mean adapted from the universal background
model (UBM). The variability in supervector can be modelled
as low-dimensional coordinate vector and corresponding space,
and this approach is known as Factor Analysis (FA).

In Joint Factor Analysis (JFA), speaker variability and
channel variability are exclusively represented. Total Variabil-
ity (TV) model, however, extracts the entire variabilities from
speakers and channels and then models them onto one space,
in which corresponding coordinate vector is considered as a
representative of speaker [12, 13]. In the following equation,
the speaker variability, presented as a difference between the
speaker-dependent supervector M and UBM supervector m, is
modelled as a subspace of acoustic feature domain 7" and a cor-
responding coordinate vector w.

M=m+Tw (1)
The vector w is a standard normal distributed random vector,
and the MAP point estimate of w is considered as identity vec-
tor, or i-vector. The i-vector approach have been successful in
speaker recognition task since the i-vector encodes the charac-
teristics of each speaker well in spite of the simple calculation
and the small number of parameters [13].

In this paper, we basically used the per-utterance i-vectors,
not per-speaker ones. That is because we assume that the chan-
nel can change constantly in real environments even if same
speaker keeps speaking. Per-utterance i-vector can reflect the
channel variability of corresponding utterance since TV matrix
involves the concept of the channel-variability matrix as well
as speaker variability matrix as mentioned above. Based on
this idea, we trained the i-vector extractor and generated the
i-vectors per utterance. These i-vectors are used to normalize
the DNN acoustic model as described in next section.

3. Feature shifting with i-vector
3.1. Feature shifting of linearly transformed i-vector

Here we propose the idea that the acoustic feature input can be
shifted as a same-size vector generated by linear transformation
of the utterance’s i-vector, resulting in better recognition per-
formance. For example, you can use 440x 100-size matrix to
transform the 100-dimensional i-vector if you use the 11 frames
of 40-dimensional acoustic feature.

As mentioned before, many authors used the i-vector ex-
pecting their model to have invariabilities because the i-vector
extracts those speaker and channel information efficiently [10].
They uses the i-vectors as DNN inputs parallel to the acoustic
feature, whereas we simply shift the acoustic feature itself.

Miao et al. ([18]) already used the i-vector induced fea-
ture shifting, but we thought that the linear transformation was
enough to utilize the i-vector appropriately for the acoustic fea-
tures since i-vectors are originally derived from linear mapping
of feature information as equation (1). However, we did not
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Figure 1: Diagram of proposed model.

use or make the Total Variability matrices (7" in eq. (1)) or
other matrices but train the network weights with traditional
cross-entropy criterion. Overall training procedure resembles
the Miao’s one: initialize phone classification networks with
SI networks, train the i-vector networks only, and then re-train
the phone classification networks. The difference is that our
proposed approach is linear transform and we used the per-
utterance i-vector. On top of that, we are supposed to suggest
something further later. Model structure is in figure 1.

3.2. Experimental setup

In our experiments, we used the TED-LIUM release-1 corpus
[20] for entire experiments in this paper. Corpus contains about
118 hours of speeches, which were collected from TED talks
of 774 speakers. We used the 95% of the whole corpus for the
model training and 5% for validation to prevent the overfitting.
Two small sets named dev and test were used for performance
measurement (4.2 and 2.5 hours, respectively).

I-vector extractor training, GMM-HMM model training and
overall speech recognition experiments were done by open-
source Kaldi toolkit [21]. The acoustic features used to train an
i-vector extractor was 60-dimensional MFCC (20-dim. MFCC
with delta and delta-delta). The extractor was trained on the
UBM of 2048 full-covariance Gaussians, and generated the
100-dimensional per-utterance i-vectors.

Before training the DNN model, we made GMM-HMM
models to generate alignments and fMLLR-adapted features.
We used 39-dim. MFCC (13-dim. MFCC with delta and delta-
delta) for training GMM-HMM model and followed the Kaldi’s
recipe. Finally we had the GMM-HMM models with 3,969
context-dependent phones and 100,133 Gaussians, and fMLLR-
adapted 39-dim. MFCC features.

For DNN' training and decoding, we basically used the
40-dim. Mel-filterbank (fbank) acoustic features but also fM-
LLR features are used. We trained two kind of networks, fbank
and fMLLR features, for each experiments. For baseline SI
model, each network was composed of 6 fully connected lo-
gistic sigmoid hidden layers with 2,048 nodes and softmax out-
puts. 11 frames of the acoustic feature vectors were spliced
(current frame and consecutive 4= 5 frames) and considered as
an input vector of the network. (440-dim. for fbank and 429-
dim. for fMLLR feature.) Networks were pre-trained based

'We used the word “DNN” to signify the DNN structure, or DNN-
HMM hybrid acoustic model.



Table 1: WER (%) of various DNN models for fbank/fMLLR
features on TED-LIUM dev/test corpus, respectively.

Models fbank fMLLR
dev | test | dev | test
Baseline DNN | 18.0 | 16.0 | 169 | 154
i-vector augmentation | 17.3 | 16.7 | 16.5 | 15.2
SAT-DNN | 16.5 | 14.7 | 16.0 | 145
Proposed | 16.2 | 14.3 | 15.8 | 14.3
SAT-DNN + baseline DNN | 17.8 | 15.6 - -
Proposed + baseline DNN | 17.4 | 15.6 - -

on stacked denoising autoencoder[22] and fine-tuning was exe-
cuted according to exponentially decaying learning rate.

For comparison, we implemented the i-vector augmenta-
tion networks ([9]) and SAT-DNN ([23]). Training procedure
of the i-vector augmentation networks were similar to the base-
line SI networks except for input vector concatenated by the
i-vector. For SAT-DNN network, we used 3-hidden-layer net-
works as the i-vector-to-feature network and each hidden layer
has 512 nodes. SAT-DNN and proposed structure were trained
as mentioned before: initialize with SI model, train the i-vector
networks only, and then update the phone classification net-
works only. Random and zero initialization were executed for
weights of i-vector part in the i-vector augmentation networks
and weights for SAT-DNN and proposed structure, but they did
not show meaningful differences. All trainings of the DNN
models were done by Kaldi+PDNN framework ([24]) which
bridges the gap between the Kaldi and the Theano and be spe-
cialized in i-vector speaker adaptation.

3.3. Baseline experiments

Table 1 shows the results of various baseline experiments. In
general, the results of DNNs with speaker-adapted fMLLR fea-
tures were better than speaker-independent fbank feature cases.
Even though both fbank and fMLLR networks were influ-
enced by the i-vector based speaker adaptation, the speaker-
independent fbank networks showed much more improvements
of recognition accuracy. That is because, in the fMLLR feature,
the speaker variability had already been normalized or modelled
by the fMLLR transformation.

The i-vector augmentation showed little amount of perfor-
mance improvements than the baseline DNN (in some case, per-
formance became worse.). Otherwise, SAT-DNN and our pro-
posed method showed much better performance improvements
than i-vector augmentation did. Proposed method defeated the
SAT-DNN, and we think this is because the number of parame-
ters is small and the linear transformation resembles the inher-
ent structure of the i-vector extraction as in eq. (1).

The last two rows in Table 1 are the results when we kept
the upper networks unchanged while the i-vector network up-
dated. Their performances were slightly better than the results
of baseline DNN. It follows from this that feature normalization
seemed to be in effect. However, the performances were much
worse than regular adaptation techniques. It means that the
acoustic models should also adapt to the feature-space changes.
Our proposed networks were slightly better than the SAT-DNNs
in this case.
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Table 2: WER (%) of various DNN models with per-speaker
i-vectors.

fbank fMLLR
Models
dev | test | dev | test
Baseline DNN | 18.0 | 16.0 | 169 | 154
i-vector augmentation | 16.8 | 15.7 | 16.5 | 15.0
SAT-DNN | 163 | 149 | 16.0 | 14.6
Proposed | 16.0 | 14.6 | 15.9 | 14.5

3.4. Per-speaker i-vector experiments

We also did the experiments on per-speaker i-vectors, and re-
sults are in Table 2. Trend of overall performances is similar to
the baseline experiments and proposed method defeated others.
One figure that does deserve highlighting in Table 2 is every
experiments perform slightly better than corresponding one in
Table 1. That is because per-speaker i-vectors are more reliable
to hold the speaker information than per-utterance one. In ad-
dition, TED talks are held in a stable environment. It means
that the channel variability of one speaker in the TED-LIUM
database is quite small. Therefore the performances in Table
2 is slightly better than the results in Table 1. Causal i-vector
([16]) can reduce the gap between per-speaker and per-utterance
i-vector, but we saved it for future work.

One question remains: Why did the multi-layer networks
get worse results than the linear transform, notwithstanding the
fact that the multi-layer perceptron is the universal function ap-
proximator ([25])? We surmised that the problem is overfitting
to the i-vectors of training set. We will apply the L2-norm reg-
ularization on both techniques and analyze the results in our
future work.

4. One-frame feature shifting

In this section, we propose the other kind of the feature shifting
approach. The per-utterance i-vectors extract the speaker and
channel variabilities between utterances. In other words, within
an utterance, the i-vector’s effect on each frame is nearly being
unchanged. Based on this idea, we suggest a modified approach
of the previously proposed method, named one-frame shifting
in this section.

In this approach, we train the linear transform from the i-
vector to one frame of the acoustic feature, and then use the
one-frame sized vector to shift entire input feature vector. For
example, in our experimental setup (11 consecutive frames of
40-dim. features), we can make the 440-dim. feature shifting by
training just the 40 100-sized matrix as in Figure 2. Basically
its framework is similar to the one in Section 3, but the size
of linear transformation matrix become much smaller in this
approach.

Actually, our implementation was different from the Figure
2, constructed in more tricky way. First we made the 40-dim.
hidden layer between the i-vector input layer and feature shift-
ing output layer. Then we set the weights between the hidden
and the output layer as stacked identity matrix and fixed them.

10 --- 0 10 --- 017
01 --- 0 01 --- 0

oo 2)
0 0 1 0 0 1
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Figure 2: Diagram of one-frame feature shifting.

By this fixed weights, values in the hidden nodes copied to the
position of each frame. In training, we updated the weights
between the input and the hidden layer.

This one-frame shifting has a competitive performance
comparing to the other approaches in spite of the parameter re-
duction. In addition, we expect this approach to be more robust
on the variation of the number of input acoustic frames since
the number of parameters to tune is unchanged as the number of
frames increases. This is a great advantage of one-frame shift-
ing model because nowadays more input frames are being ac-
cepted as the DNN models become larger. In large-scale DNN
model, one-frame shifting can work better than other i-vector
based adaptation approaches.

This model can also cope with the variation of the i-
vector/feature vector dimension because of the smaller size of
the weight matrix. For example, if the dimensionality of the
acoustic feature increases from 40 to 60, then the parameter
number increment is 20x 11x 100 for linear transform model
and 20x 100 for one-frame shifting model respectively. We
wanted to know experimentally that our model was robust on
variations of these factors: input frame number, feature dimen-
sion and the i-vector dimension. However, we could not do
these experiments because of the time insufficiency and so leave
those as the future work.

4.1. Experiments

‘We used the 1/10 subset of the entire TED-LIUM corpus for the
experiments of the one-frame shifting, due to time insufficiency.
After choosing 67 speakers randomly, their 5,097 utterances
were used in the experiments of this section. As the size of
database decreases, we used the smaller DNN to build up base-
line model: 6 layers and 1,024 units per each layer. The other
factors were same as our experiments in Section 3. 11-frame
spliced 40-dim. fbank features were used for speeches to be
classified into 3,969 context-dependent phones. The i-vectors
used in this experiments were same as in previous experiments.

The results of experiments are in Table 3. Due to the reduc-
tion in the database, the baseline DNN performance degener-
ated. It seemed that overfitting occurred because we decreased
the model size by half while the database size was reduced 1/10.
The results of the i-vector augmentation got even worse than
the baseline DNN, whereupon we became convinced of over-
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Table 3: WER (%) of various DNN models including one-frame
shifting on the fbank features of TED-LIUM 1/10 set.

models ‘ dev ‘ test ‘

Baseline DNN | 27.4 | 26.9

i-vector augmentation | 29.3 | 29.6

SAT-DNN | 264 | 259

Linear transformation (proposed) | 26.0 | 25.7
One-frame shifting (proposed) | 25.5 | 25.0
Linear trans. + baseline DNN | 27.0 | 26.7
One-frame + baseline DNN | 27.1 | 26.5

fitting. The i-vector augmentation network naturally has a lot
more weights than other adaptation methods since additional
weights are added between input and hidden layer.

Overall trends were similar to Table 1. The performances
of SAT-DNN were good, and our linear transformation results
were slightly better than SAT-DNN. On top of that, the one-
frame shifting had a lower WER even if its model size was only
a eleventh of the our linear transformation.

The last 2 rows of Table 3 are the results of feature shifting
only. As in last 2 rows of Table 1, their upper networks kept un-
changed while the lower i-vector networks were updated. This
means the feature normalization without corresponding model
adjustment, as mentioned before. The noticeable point is that
the feature normalization version of the one-frame shifting got
26.5%, relatively 6% worse than the model adaptation result
(test set number). It was quite small degradation considering
that the model was not updated. It means that the one-frame
shifting can adjust the acoustic features suitable for SI DNN, as
befits the name speaker normalization. We will check whether
this tendency is still valid on larger database as the future work.

5. Conclusions

We have showed a speaker normalization technique using the
per-utterance i-vectors in this paper. First we proposed a linear
transformation of the i-vectors to adapt the acoustic features,
and then presented more simplified version of it, one-frame
shifting. Both approaches shift acoustic feature vectors in the
speaker-normalized direction by the i-vectors mapped into fea-
ture space. Speaker normalized feature itself can show an ef-
fect of the performance gain comparing to the baseline DNN,
but speaker-independent DNN can be updated further complet-
ing the model adaptation. In experiments, both feature shifting
showed meaningful performance improvements.

There are many things to do in our plan. First of all, we
will apply the L2-norm regularization on the proposed meth-
ods. Also, experiments of one-frame shifting will be done with
the larger database. For future works, we will check the perfor-
mance of the causal i-vector [16] and confirm the robustness on
the various dimension and splicing scale of the feature vectors.
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