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Abstract
Recently, we have proposed an unsupervised filterbank learning
model based on Convolutional RBM (ConvRBM). This model
is able to learn auditory-like subband filters using speech signals
as an input. In this paper, we propose two-layer Unsupervised
Deep Auditory Model (UDAM) by stacking two ConvRBMs.
The first layer ConvRBM learns filterbank from speech sig-
nals and hence, it represents early auditory processing. The
hidden units’ responses of the first layer are pooled as short-
time spectral representation to train another ConvRBM using
greedy layer-wise method. The ConvRBM in second layer
trained on spectral representation learns Temporal Receptive
Field (TRF) which represent temporal properties of the audi-
tory cortex in human brain. To show the effectiveness of the
proposed UDAM, speech recognition experiments were con-
ducted on TIMIT and AURORA 4 databases. We have shown
that features extracted from second layer when added to filter-
bank features of first layer performs better than first layer fea-
tures alone (and their delta features as well). For both databases,
our proposed two-layer deep auditory features improve speech
recognition performance over Mel filterbank features. Further
improvements can be achieved by system-level combination of
both UDAM features and Mel filterbank features.
Index Terms: Convolutional RBM, filterbank, Temporal Re-
ceptive Field (TRF), speech recognition.

1. Introduction
Representation learning is a type of deep learning where fea-
tures from the raw data can be learned by the underlying model
with several layers of nonlinearities [1]. Unsupervised repre-
sentation learning is the most important form of learning since
many of the learning tasks in humans is unsupervised in na-
ture such as language acquisition by the infants [2]. Features
for various cognitive tasks such as vision and hearing in human
are not present from infant stage instead they are learned from
the experience [3]. Features based on human auditory process-
ing perform better for various speech processing applications
including speech recognition in clean and noisy conditions [4],
[5]. Auditory processing includes the modeling of various pro-
cessing stages in human ear (also called as early auditory pro-
cessing [6]) and processing the auditory nerve signals in audi-
tory cortex [4]. The methods for auditory modeling are based
on computational models and data-driven approaches. There
are several data-driven approaches for early auditory model-
ing [7–10] including our recently proposed work in [11]. We
have proposed single layer unsupervised learning model Con-
volutional Restricted Boltzmann Machine (ConvRBM) to learn
filterbanks directly from the speech signals. The computational

auditory models for early auditory and auditory cortex are dis-
cussed in [12].

Several supervised deep learning methods were applied
on speech signals to learn features and acoustic model jointly
[13–17]. Earlier stacks of ConvRBM (called as a Convolutional
Deep Belief Network) with sigmoid units as an unsupervised
learning model was applied to spectrograms to learn higher-
level temporal modulation features [18]. We have proposed sin-
gle layer ConvRBM with rectified linear units (ReLU) to learn
temporal modulation features from Mel spectrograms [19]. Our
both the works using ConvRBM reported in [11], [19] are single
layer models.

In this paper, we propose to use our recent work of fil-
terbank learning in [11] and receptive field learning in [19]
by stacking two ConvRBM as a deep auditory model. In ad-
dition, proposed ConvRBM-based approach is also shown to
be stable under additive noise which aids its robustness under
signal degradation conditions. Our work has strong similar-
ity with recently proposed acoustic modeling framework from
the raw speech signals using Convolutional Neural Networks
(CNN) [16]. Compared to the work in [16], our generative deep
model is unsupervised in nature and can be scalable to vari-
able length inputs. It can be used to learn features as a front-
end for supervised deep models as back-end. Our deep model
with two convolution stages is related to computational auditory
model [20] and deep scattering spectrum [21] where the filters
are not learned from data. The ASR experiments on TIMIT and
AURORA 4 databases shows that features from our proposed
deep model perform better than handcrafted Mel filterbanks.

2. Architecture of Convolutional RBM for
auditory processing

Convolutional RBM (ConvRBM) is a probabilistic unsuper-
vised learning model with two layers, namely, visible layer and
hidden layer [22]. We first describe the ConvRBM to model 1-
D signals such as speech which can easily be extended to Con-
vRBM with different subbands (i.e., 2-D input). The input to the
visible layer (v) is an entire signal of length nV . Hidden layer
is divided into K number of groups of nH − D array (where
nH = nV − nW + 1 length of ‘valid’ convolution). Visible
and hidden layer (h) is connected with K number of weights
denoted as W each of nW -dimensional. Weights W between
visible and hidden units are shared among all the locations. Bi-
ases are also shared in the hidden layer and visible layer denoted
as bk and c, respectively. If we denote bk as the hidden bias for
kth group, then response of the convolution layer for the kth

group is given as:

Ik = (v ∗ W̃k) + bk, (1)
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Figure 1: Block diagram of proposed UDAM using ConvRBMs. (a) Speech signal, (b) learned subband features of C1, (c) pooled
subband signals followed by compressive nonlinearity, (d) PCA whitening and (e) learned modulation representation.

where ∗ denotes ‘valid’ length convolution operation and W̃k

denotes flipped array (for convolution operation) [22]. The en-
ergy function for ConvRBM is defined as [18],
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1
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The joint probability distribution (PDF) in terms of this en-
ergy function is given by [22]:

P (v,h) =
1

Z
exp(−E(v,h)). (3)

We have used rectified linear units (ReLU) in hidden layer
of ConvRBM. The sampling from hidden units is performed us-
ing noisy ReLU as done in [23]. Sampling equations for hidden
and visible units are given as [11]:

hk ∼ max(0, Ik +N(0, σ(Ik))),

v ∼ N

(
K∑

k=1

(hk ∗Wk) + c, 1

)
,

(4)

whereN(0, σ(Ik)) is a Gaussian noise with zero-mean and sig-
moid of Ik as it’s variance. During feature extraction stage (i.e.,
testing stage), we have used deterministic version of ReLU acti-
vation max(0, Ik). Second ConvRBM is stacked on top of first
ConvRBM to model 2-D time-frequency representation (i.e.,
subband filterbank) obtained from first ConvRBM. The sam-
pling equation for second ConvRBM can similarly be written
from eq. (4). Both ConvRBMs are trained using single-step
Contrastive Divergence (CD) [24] in greedy layer-wise manner.
Let C1 and C2 denote ConvRBMs for first and second layer,
respectively. The block diagram of our proposed UDAM archi-
tecture is shown in Figure 1.

2.1. ConvRBM to model speech signal

The input to ConvRBM (C1) is an entire speech signal of length
n-samples. Weights of C1 with length m1-samples in each are

also called as subband filters with respect to speech percep-
tion mechanism in hearing [11]. Convolution with K = K1
subband filters decompose the speech signal into different sub-
bands. Subbands are ordered according to center frequencies
of subband filters. The output of C1 is pooled according to 25
ms window length and 10 ms window shift followed by com-
pressive nonlinearity as shown in Figure 1 [11]. Let us denote
this short-time spectral representation as y which is of K1×F
dimensional (where F is the number of frames).

2.2. ConvRBM to model subband filterbank

The input v to the ConvRBM C2 is y which is a time-frequency
representation of speech with K1 subbands and nV = F
frames pooled from C1 responses. Before passing the input to
C2, Principal Component Analysis (PCA) as a whitening trans-
form is applied on y (as shown in Figure 1). Whitening the
data using PCA gives approximation to sub-cortical processing
which was observed in auditory cortex [25]. The weights of C2
are having length m2 number of frames. Pooling is not per-
formed after C2 since we want to keep same number of frames
to use as features with C1. The hidden layer has K = K2
groups which is two times overcomplete (i.e., K2 = 2K1).
Hence, if K1 = 40 subbands then K2 = 80 groups in C2 re-
sulting in 120-D feature representation (we kept this to compare
standard 120-D Mel filterbank with 40 filters and their delta fea-
tures). The summary of notations and corresponding configura-
tions for the both layers are given in Table 1.

Table 1: Notations of UDAM architecture

ConvRBM input v nV nW K

C1 speech n samples m1 samples K1
C2 filterbank F frames m2 frames K2

3. Analysis of the proposed model
In this Section, we analyze both ConvRBMs in terms of what it
learns from the data.
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3.1. Analysis of first layer C1

As we have shown in our recent work [11], the first ConvRBM
C1 learns auditory-like filterbank when trained on speech sig-
nals. Hence, C1 may represent early auditory processing with
subband filters (as shown in Figure 1) and half-wave rectified
nonlinearity (i.e., ReLU). The feature representation steps in-
volved in this ordering resemble the simplified form of auditory
processing in the human ear [6], [12].

3.2. Analysis of second layer C2

The weights learned in C2 are visualized by applying inverse
of PCA whitening on the C2 weights. Since convolution is ap-
plied in temporal-domain (for each subbands), patches of sub-
band filters represent Temporal Receptive Fields (TRFs) [18].
Examples of TRFs learned on AURORA 4 database are shown
in Figure 1 where each block represents one TRF. ConvRBM
subband filters capture temporal modulation information with
different subband modulation frequencies from first layer filter-
bank. Detailed analysis of TRFs is presented in [18] and [19].
Each subband filter represent temporal variations in different
phonetic units similar as delta features (∆+∆∆) of filterbanks.

3.3. Stability of convolutional network to additive noise

Since ConvRBM C1 follows Mel scale as shown in [11], it can
be proved that ConvRBM is also stable to deformations in the
speech signals [21]. Here, we will discuss the stability w.r.t.
additive noise. Let T be the transformation applied on input
v. For T to be stable to additive noise v̂ = v + ε, Lipschitz
continuity condition needs to be satisfied for constant λ > 0
which is given as [26],

‖Tv − T v̂‖2 ≤ λ ‖v − v̂‖2 (5)

This condition is proved for scattering convolutional networks
[21] and recently for supervised CNN with certain criteria such
as max-norm regularization for weights, ReLU nonlinearity and
max-pooling [27]. Our model also has convolution and ReLU
stages and hence, we can prove that ConvRBM is also stable
to the additive noise. The stability conditions are discussed for
first layer C1. However, can easily be extended for the second
layer.

3.3.1. Stability of convolution in ConvRBM

The transformation T for convolution operation in ConvRBM
for kth group is Tv = v ∗ W̃k. In [27], weights are max-
norm regularized to obtain stability criteria. ConvRBM training
includes weight decay which penalizes the weights to be small
and smooth. For TIMIT and AURORA 4 databases, we have
observed that for C1 layer ‖W‖1 ≤ 3 and ‖W‖1 ≤ 2.5, re-
spectively. Hence, based on derivation in [27] for convolution
operation in ConvRBM, following stability condition holds:∥∥∥v ∗ W̃k − v̂ ∗ W̃k

∥∥∥
2
≤ λ ‖v − v̂‖2 , (6)

where λ=3 for TIMIT and λ=2.5 for AURORA 4 database.

3.3.2. Stability of rectified nonlinearity

As discussed in Section 2, we have used deterministic ReLU
for feature extraction. It is proved in [27] that ReLU operation
is also stable with λ=1. The stability condition for ConvRBM
with response Ik for clean and Îk for additive noise is given as,∥∥∥max(Ik, 0)−max(Îk, 0)

∥∥∥
2
≤
∥∥∥Ik − Îk∥∥∥

2
. (7)

The stability of ConvRBM to additive noise resulted in im-
proved performance in AURORA 4 speech recognition task
even though the subband filters are learned from data.

4. Experimental setup
The ASR experiments were performed with clean and multicon-
dition training database described as follows:

4.1. Speech databases

4.1.1. TIMIT database

For phone recognition task, TIMIT database was used [28]. In
TIMIT database, all SA category sentences (same sentences
spoken by all the speakers) were removed as they may bias the
speech recognition performance. Training data contains utter-
ances from 462 speakers. Development and test set contains
utterances from 50 and 24 speakers, respectively.

4.1.2. AURORA 4 database

We have also used AURORA 4 database created using six dif-
ferent types of additive noises, namely, car, crowd of people
(babble), restaurant, street, airport and train station [29]. Multi-
condition training data consists of 7138 utterances from WSJ0
database with half of them recorded with the Sennheiser micro-
phone and the other half recorded with the second microphone.
The 14 test sets each with 330 utterances, are grouped into four
categories, namely, A: clean (set 1), B: noisy (set 2 to set 7), C:
clean+mismatch (set 8) and D: noisy+mismatch (set 9 to 14).

4.2. Training of ConvRBMs and feature representation

The training parameters for C1 is same as that of used in our
recent work in [11]. Training method of C2 is different than
the one used in [19]. For C2, the learning rate was chosen to be
0.005 which is fixed for first 20 epochs and decayed later. Com-
pared to work in [18] and [19], we have not used sparsity reg-
ularization since our model uses ReLUs which provides spar-
sity in the hidden units (forcing negative activations to zero).
Weights are regularized using weight decay with a factor of
0.0001. To have a fair comparison with standard 120-D FBANK
features, we restrict ourselves to 40-D filterbank in C1 and 80-
D features in C2 giving 120-D feature vector. The notations for
different features are given in Table 2.

Table 2: Notations of different features used in this study

Description Notation of features
Mel filterbank with delta features FBANK (120-D)

Filterbank from C1 C1 (40-D)
Modulation features from C2 C2 (80-D)
Feature fusion of C1 and C2 C1+C2 (120-D)

4.3. ASR system building

Monophone GMM-HMM systems were built using 39-D
MFCC features for both the databases to generate force-aligned
labels. MFCC features were extracted from windowed speech
signal with 25 ms length and 10 ms shift similar as parameters
of pooling after C1. For TIMIT database, 48 phones were used
for training and mapped to 39 phones during scoring as done
in [30]. Language modeling is performed using bi-gram for
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TIMIT and tri-gram for AURORA 4. In this paper, all ASR sys-
tems were built using KALDI speech recognition toolkit [31].
Hybrid DNN-HMM systems were built using fast implementa-
tion of p-norm DNNs with p = 2 [32] (different to our recent
works [11] and [19] where we have used vanilla DNN). ASR
system combination (denoted as ⊕ symbol) is performed using
the minimum Bayes risk decoding [33].

5. Experimental Results
5.1. Results on TIMIT database

The parameters of C1 layer is same as tuned in [11] with filter
length m1=128 samples. To analyze the significance of second
layer C2, we have compared the performance of single layer
C1 filterbank with feature fusion of C1 and C2. The results of
these experiments are reported in Table 3 in % Phone Error Rate
(PER) using hybrid p-norm DNN with parameters: 2000 hidden
units, group size of 5, 2 hidden layers and 9 frame context win-
dow. From Table 3, we can see that by adding delta features in
filterbank features extracted from C1, we obtained small rela-
tive improvement of 0.9 % compared to C1 features. The sec-
ond layer features C2 alone perform better or comparable to C1
along with their deltas. The filter length of 8 frames in C2 works
better then 6 and 10 frames when added to C1 features. It gives
relative improvement of 3.6 % compared to only C1 features
and 2.73 % compared to the C1 along with their delta features.
The FBANK features are compared with deep features C1+C2
using the same hybrid p-norm DNN of 3 hidden layers in Table
4. C1+C2 features gives relative improvement of 5.36 % (1.2 %
absolute) on development set and 2.56 % on test set compared
to FBANK features. System combination improve performance
on test set only which is 5.13 % relative to FBANK.

Table 3: % PER for Comparison of filter length in C2 and com-
parison with first layer features on TIMIT development set

ConvRBM features Filter length in C2 (m2) Dev
C1 (40-D) - 22.2

C1+∆ + ∆∆ (120-D) - 22.0
C2 (80-D) 6 22.0
C2 (80-D) 8 21.8

C1+C2 (120-D) 6 22.1
C1+C2 (120-D) 8 21.4
C1+C2 (120-D) 10 21.8

Table 4: Results on TIMIT database in % PER.

Features Dev Test
A: FBANK (120-D) 22.4 23.4
B: C1+C2 (120-D) 21.2 22.8

A ⊕ B 21.2 22.2

5.2. Results on AURORA 4 database

Similarly to that of TIMIT database, we have shown the results
of varying the length of second layer filter and compared it with
first layer features C1. The % Word Error Rate (WER) of these
experiments are reported in Table 5 using hybrid p-norm DNN
with parameters: 2000 hidden units, group size of 5, 2 hidden
layers and 9 frame context window. For C2, filter length of 10
frames perform better compared to 8 frames in TIMIT. Use of
second layer features C2 improves performance compared to
C1 features alone as well as addition of delta features in C1.
Specifically, for multicondition test sets (i.e., C and D), using

Table 5: Comparison of filter length in C2 for AURORA 4
database in % WER. Dimensionality of features are same as
denoted in Table 2

Features A B C D Avg
C1 9.36 17.90 22.64 34.66 21.14

C1+∆ + ∆∆ 9 17.05 22.44 33.19 20.42
C1+C2, m2=6 9.25 17.18 22.08 33.29 20.45
C1+C2, m2=8 8.91 17.25 22.17 33.47 20.45
C1+C2, m2=10 9.1 16.97 21.22 32.54 19.96

C2, m2=10 8.87 18.37 23.48 34.4 21.28

Table 6: Results on AURORA 4 database in % WER

Features(120-D) A B C D Avg
A: FBANK 10.41 18.16 22.45 34.09 21.28
B: C1+C2 8.37 16.89 20.96 33.04 19.82

A ⊕ B 8.56 16.14 19.73 32.07 19.12

C1+C2 features, there is an absolute reduction of 1.12-1.42 in
% WER over C1 and 0.63-1.22 % absolute reduction in WER
over C1 along with delta features. Finally, the C1+C2 features
are compared to FBANK features in Table 6 with 3 layer p-norm
DNN. Absolute reduction of 1-2 % in WER is obtained using
C1+C2 features compared to FBANK features. The fusion of
both C1 and C2 features perform better than C1 and C2 features
alone. System combination further reduce WER (except in test
set A) with significant reduction for test sets C and D compared
to FBANK and C1+C2 features. Hence, both features contain
complementary information. The improvements in AURORA 4
task can be justified based on stability of ConvRBM to additive
noise as discussed in Section 3.3.

6. Summary and conclusions
Unsupervised deep auditory model (UDAM) is proposed to
model human auditory processing by stacking two ConvRBMs.
First layer ConvRBM learns filterbank from speech signals and
hence, represent early auditory processing. Second layer Con-
vRBM learns temporal receptive fields and hence, represent
model of auditory cortex. We have shown that ConvRBM is
stable to additive noise using Lipschitz continuity condition.
Significance of features of both layers is verified using ASR ex-
periments on clean and multicondition databases. The second
layer modulation features perform better when added to filter-
bank compared to delta features. Feature fusion of both layers
perform better compared to Mel filterbanks for both TIMIT and
AURORA 4 databases. Both learned features and handcrafted
features contain complementary information resulting in further
reduction of error rates using system-level combination. Our
future work is to extend the second layer ConvRBM to learn
Spectro-Temporal Receptive Fields (STRFs). We would also
like to perform detailed mathematical analysis of UDAM in-
cluding stability to deformations.
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[14] Z. Tüske, P. Golik, R. Schlüter, and H. Ney, “Acoustic modeling
with deep neural networks using raw time signal for LVCSR,” in
INTERSPEECH, Singapore, Sept. 2014, pp. 890–894.

[15] D. Palaz, M. Magimai-Doss, and R. Collobert, “Convolutional
neural networks-based continuous speech recognition using raw
speech signal,” in 40th International Conference on Acoustics,
Speech and Signal Processing (ICASSP), South Brisbane, QLD,
2015, pp. 4295–4299.
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