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Abstract
Recent work has demonstrated, on small datasets, the feasibil-
ity of jointly learning specialized speaker and phone embed-
dings, in a weakly supervised siamese DNN architecture using
word and speaker identity as side information. Here, we scale
up these architectures to the 360 hours of the Librispeech cor-
pus by implementing a sampling method to efficiently select
pairs of words from the dataset and improving the loss function.
We also compare the standard siamese networks fed with same
(AA) or different (AB) pairs, to a ’triamese’ network fed with
AAB triplets. We use ABX discrimination tasks to evaluate the
discriminability and invariance properties of the obtained joined
embeddings, and compare these results with mono-embeddings
architectures. We find that the joined embeddings architectures
succeed in effectively disentangling speaker from phoneme in-
formation, with around 10% errors for the matching tasks and
embeddings (speaker task on speaker embeddings, and phone
task on phone embedding) and near chance for the mismatched
task. Furthermore, the results carry over in out-of-domain data-
sets, even beating the best results obtained with similar weakly
supervised techniques.

1. Introduction
A current problem in machine learning is to learn representa-
tions that are invariant with respect to a set of transformations
[1, 2]. This is especially relevant in speech, where the acous-
tic signal carries simultaneously linguistic, speaker-specific and
channel information. It would therefore be of great interest to
be able to untangle these representations, i.e., to derive repre-
sentations that are selective to one dimension and invariant to
the others.

Typically, selectivity is achieved through a supervised clas-
sification task. For instance, to learn speaker and channel in-
variant linguistic representations, one trains a phone classifier
on a corpus that contains enough variation in all of these dimen-
sions. Vice versa, to learn speaker representations, one trains a
speaker classifier. Previous work has explored the possibility
to use weak supervision to achieve invariant representation: [3]
used a siamese architecture [4] where two otherwise identical
copies of the same deep neural network (DNN) were presented
with pairs of words that were either phonetically the same or
different. The only information provided to the network was
whether the words were the same or not, and a contrastive loss
function on the output layer tried to maximize the similarity of
the two representations when the words were the same and max-
imize the dissimilarity when they were different. The results
showed that this technique reached the same level of invariance
than supervised techniques.

Further work explored the possibility of disentangling pho-
neme and speaker information within the same network [5].
Here, two output layers were defined, one dedicated to phone
representations (phone embedding) while the other was dedi-
cated to speaker representations (speaker embedding). The in-
put pairs of words were either phonetically the same or differ-
ent, and that were spoken either by the same speaker or different
speakers. A contrastive loss function on each of the embeddings
tried to emphasize one dimension while ignoring the other, and
vice versa. The results ran on a small corpus were encourag-
ing, as the dual training network performed comparably to two
single training networks separately, thereby saving computation
time for identical results. However, the representations were far
from achieving complete phoneme / speaker disentanglement in
either regimes.

Here, we expand on this previous work in three ways. First,
we scale up the architecture to deal with a considerably larger
dataset. Secondly, we improve on the loss function by adding
a margin and investigating a triplet-based loss function as in
[6]. Finally we present out-of-domain experiments that show
the selectivity and invariance properties on different languages.

2. Model
2.1. Weak supervision for sub-word units

We represent the speech signal using log compressed mel fil-
terbanks frames (Mel Filterbanks Spectral Coefficients, MFSC)
with a window size of 25ms and a shift of 10ms. The net-
works learn phonetic and/or speaker embeddings of sub-words
units, provided an input defined as a stack of 7 or 15 of suc-
cessive filterbank frames. Instead of forcing the network to
encode the input into specific sub-word units (phonemes, di-
phones, triphones, phonetic features), we use the weakly super-
vised technique of [3] which only specifies whether the inputs
are the same or different in terms of phonemes and speakers,
and let the network figure out by itself what are the most ap-
propriate sub-word units, provided they show the right level of
invariance.

For training, we use annotation at the word level, and in
terms of speaker identifiers. For pairs of identical words (same
or different speakers), we first realign them at the frame level
using Dynamic Time Warping (DTW) [7]. Sliding windows
of stacked frames are then presented to the two entries of the
siamese network. Dissimilar pairs are simply aligned along the
diagonal.

2.2. Siamese network

The multi-output siamese architecture is trained using labeled
pairs (x, x′, yphn, yspk) where x and x′ are two input stacks
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of frames, yphn ∈ {0, 1} is 1 if x and x′ are phonetically
similar and yspk ∈ {0, 1} is 1 if x and x′ are said by the
same speaker. Given x, the network outputs a phonetic embed-
ding ephn(x) ∈ Rd and a speaker embedding espk(x) ∈ Rd;
the same architecture and parameters are used for ephn(x) and
espk(x), except for the last layer.

Siamese networks are trained using a loss function defined
on pairs which, given any two embeddings e, e′ in Rd and
a label y ∈ {0, 1}, enforces that e should be close to e′ if
y = 1, while the two embeddings should be far away if y = 0.
The similarity between embeddings is measured by their cosine
cos(e, e′) = e.e′

||e||2||e′||2
. The pairwise loss function we pro-

pose is

`γ(e, e′, y) =

{
− cos

(
e, e′

)
if y = 1

max(0, cos(e, e′)− γ) if y = 0
,

where γ is a margin hyperparameter. The loss of the multi-
output network is then

L(x, x′, yphn, yspk) = `(ephn(x), ephn(x′), yphn)

+ `(espk(x), espk(x′), yspk) .

We also experimented with single output networks, which learn
only either ephn or espk.

2.3. Triamese network

The triamese network uses a triplet-based loss function [8, 9,
6]. The model has the same architecture as before, but now the
data takes the form (x11, x

2
1, x

1
2) where (x11, x21) are input stacks

with similar phonetic content from two different speakers, and
(x11, x

1
2) are stacks from two different words said by the same

speaker.
A triplet loss enforces constraints on relative similarities be-

tween pairs. For phonetic embeddings ephn, the units from the
same word but different speakers (x11, x21) should be more simi-
lar than the units from different words but the same speaker (x11,
x12). The rule is inverted for speaker embeddings. Formally, the
triplet loss is defined for any three embeddings e, e′, e′′ as

˜̀
γ(e, e

′, e′′) = max
(
0, γ − cos(e, e′) + cos(e, e′′)

)
.

In the final model, we may have different margin parameters
γphn and γspk for phonetic and speaker embeddings respec-
tively. The losses for each embeddings are then

˜̀phn(x11, x
2
1, x

1
2) = ˜̀

γphn

(
ephn(x11), e

phn(x21), e
phn(x12)

)
,

˜̀spk(x11, x
2
1, x

1
2) = ˜̀

γspk

(
espk(x11), e

spk(x12), e
spk(x21)

)
.

For the multi-output network, the final loss is ˜̀phn + ˜̀spk.
A multi-output triamese is shown in Fig. 1.

3. Experiments
3.1. Experimental Setup

The neural networks are trained on the 360 hours of read speech
(920 speakers) constituting the train clean 360 subset of the
Librispeech dataset [10]. We obtained the speech fragments
for each word of the dataset by force-aligning a state-of-the-
art HMM-DNN [10] with transcription at the phone level, and
then segmenting the speech at word boundaries.

After preliminary experiments, we focused on a deep neu-
ral net architecture with four hidden layers with 1000 units and

Figure 1: A multi-ouput triamese network. All parameters of
each of the three branches at a given depth are shared.

a final embedding layer of size d = 100. A RReLU non-
linearity [11] is applied at each layer (ReLUs exhibited simi-
lar performances). We used Adadelta [12] with interpolation
parameter 0.9 and epsilon 10−6 to train the siamese architec-
ture, whereas plain stochastic gradient descent (SGD) seemed
to perform slightly better for the triamese model. The learning
rate for SGD starts at 0.01 and is halved when the error on the
development set stops to decrease (with a minimum of 10−6).
The margin parameters (γ, γphn and γspk), the weight decay,
and the number of frames in an input stack were respectively
chosen among {0.15, 0.5, 0.85}, {0, 0.001} and {7, 15}. The
dev clean split of the dataset is used for early stopping and hy-
perparameter selection.

3.2. Evaluation metrics and datasets

We evaluate the selectivity and invariance properties of the em-
beddings learned by the system with ABX discrimination tasks
[13, 14].

An ABX task is performed on three utterancesA,B andX ,
withA andB belonging to different classes andX matching the
category of either A or B. Let us assume for the sake of exam-
ple that X matches the class of A. If D(A,X) > D(B,X),
with D some distance function, then the error is 1 (failure), else
it is 0 (success). By averaging the error over all relevant A, B
and X that can be found in the data, we can evaluate the dis-
criminability of the class on which A and B differ, from 0% to
50% (chance level) in the representation space where the tasks
are performed.

In our experiments, A, B and X are triphones that may
only differ by their central phoneme. When evaluating pho-
netic discriminability, A and B share the same speaker while
their central phoneme is different, and X matches A on its pho-
netic content but is pronounced by a different speaker. Hence,
this phonetic discriminability task is performed across speakers,
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Discriminability A B X
Phonetic /beg/ sp1 /bag/ sp1 /beg/ sp2
Speaker /beg/ sp1 /beg/ sp2 /bag/ sp1

Table 1: Examples of A, B and X for both phonetic and speaker
discriminability tasks. ”spi” stands for speaker number i.

which makes it a harder task than if A, B and X shared the same
speaker. Switching B and X provides a speaker discriminability
task across phonemes. Table 1 shows examples for both tasks.

Precisely, each triphone is represented as a stack of frames
in the embedding space (each embedding is considered to be
time-aligned with the central frame of the input stack), and the
distance between triphones is computed as the sum of the cosine
distances between aligned frames after DTW. An ABX task is
then performed per triplet and we show the average error over
all triplets that can be found in the data.

3.2.1. In-domain evaluation

Evaluations on the Librispeech dataset are computed on the
test clean subset. We use annotations at the phoneme level from
the forced alignment to extract all relevant triplets from the test
set. We then subsample randomly 10% of the triplets to get
600k ABX triplets for the evaluation, from 40 speakers.

3.2.2. Out-of-domain evaluation

In order to evaluate the robustness of the learned representa-
tion across datasets and languages, we also performed two sets
of out-of-domain experiments. First, we evaluated our embed-
dings on the training set of the TIMIT dataset [15], a corpus of
clean read speech containing 10 sentences read by 630 speak-
ers of 8 major dialects of American English. We extracted all
triplets from the train set of the standard train/dev/test split.
We then subsample randomly 10% of these triplets, and obtain
1.87m ABX triplets total, with 462 speakers.

We also evaluated out-of-domain performance across lan-
guages by evaluating our embeddings on the Xitsonga dialect,
subset of the NCHLT corpus. This corpus was used in the ze-
rospeech 2015 challenge [16], for unsupervised discovery of
phone embeddings, and we will compare our method to the best
in-domain unsupervised system. The corpus used for evaluation
contains 240k ABX triplets, for 24 speakers.

3.3. Results

We present the ABX error rate of phone and/or speaker em-
beddings, each one on both phone across speaker and speaker
across phone task. For the phone embedding, lower ABX error
rates are better on the phone across speaker task (high selectiv-
ity), but a score close to 50% is better for the speaker across
phone task because it means high invariance. Conversely, bet-
ter speaker embeddings have lower speaker across phone error
rate. For each size of input stack (7 or 15), the chosen hyperpa-
rameters for the siamese networks are γ = 0.5 and a weight de-
cay of 0 and for the triamese we use γphn = 0.85, γspk = 0.5
and a weight decay of 0.001.

3.3.1. In-domain results

The results on the test set of Librispeech are presented in Ta-
ble 2. As a baseline, we also present the results of stacks of 7
MFSC frames (input features), which was shown to give good
results on TIMIT [3]. The main results are clear. For all net-

phone embed. speaker embed.
model task phn spk phn spk
MFSC7 - 24.5 32.9 24.5 32.9
Sia7 single 10.9 46.0 46.4 23.9

double 10.5 45.9 45.4 9.3
Sia15 single 9.7 47.1 45.8 12.4

double 10.2 46.6 45.3 8.7
Tri7 single 10.0 46.0 45.0 10.0

double 11.5 45.0 45.7 9.4
Tri15 single 9.8 46.9 44.6 9.4

double 10.7 46.2 44.7 8.1

Table 2: ABX error rates on Librispeech. The evaluation tasks
are either ABX on phones across speakers (phn) or ABX on
speakers across phones (spk). MFSC7 is a no training baseline
where 7 stacked filterbanks are used as both phone and speaker
embeddings.“Sia” is for siamese, “Tri” for triamese networks,
followed by the number of frames in an input stack. “single”
means that the phonetic and speaker embeddings were trained
separately in single output networks, whereas “double” refers
to a multi-training multi-output network.

works, the phone and speaker tasks show high selectivity on
their matched embeddings with an error rate around 10% (best
score, respectively of 9.7% and 8.7%). At the same time, the
scores on the mismatched embeddings (phonetic embedding for
a speaker task and speaker embedding for a phonetic task) are
within 5% of the chance level. This means that the embed-
dings have learned not only to be selective for the relevant di-
mension, but also to ignore the irrelevant one. This contrasts
with the MFSC7 input representations that encode both dimen-
sions. Moreover, even though comparisons are limited because
the datasets are different, we achieve here a level of disentan-
glement that was not obtained in [5], in which phonetic em-
beddings had phonetic discriminability close to the raw MFSC
(30.4% and 34.1% error respectively), and were less speaker-
invariant than MFSC (30.8% and 38% error respectively).

In addition, we can see that the double embedding archi-
tectures do roughly as well as the single ones, even though the
former have to share most of the network’s weights for the two
competing tasks. The speaker embedding (tested on the speaker
task) seems to consistently benefit from the double training re-
gime compared to a network trained only on a single task, these
gains ranging from 0.6% to 14.5% (absolute). The phone tasks,
in contrast, are less consistently affected, some architectures
showing a small gain and most others a small cost.

3.3.2. Out-of-domain results

The results on TIMIT and Xitsonga are shown in Table 3. For
reference, we show the same MFSC baselines, a supervised
phone classifier (DNN from [3]) on TIMIT, and the previous
best weakly-supervised trained (in-domain) siamese neural net-
works on these datasets (using scattering features [17]). These
results are remarkable for several reasons: First, models trained
on Librispeech generalize properly to TIMIT (no dataset over-
fit), both for tasks on phones and on speakers, i.e. they keep very
good level of selectivity and invariance compared to the train-
ing dataset, even though they are tested on 462 speakers (40 for
the in-domain evaluation). Second, models trained on English
(Librispeech) generalize to Xitsonga, a language typologically
unrelated to English, containing a large array of consonants (54)
including some click consonants and a contrast between breathy
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phone embed. speaker embed.
model phn spk phn spk

Language: English (TIMIT) [15]
MFSC7 20.5 39.7 20.5 39.7
DNN supervised[3] 9.2
Best ScatABnet[17] 9.8
Tri15 (double) 10.3 47.9 43.4 14.2
Tri15 (single) 9.2 48.7

Language: Xitsonga (NCHLT) [18]
MFSC7 30.1 25.8 30.1 25.8
Best ScatABnet[17] 15.8
Tri15 (double) 15.4 41.6 44.7 14.3
Tri15 (single) 15.5 42.6

Table 3: Out-of-domain ABX results on a different dataset in
English (TIMIT) and on a different language, Xitsonga. The re-
sults for Tri15 are obtained from extracting output embeddings
from a (single or double) Triamese neural network previously
trained on Librispeech. MFSC7 is an untrained stacked filter-
bank baseline, and ScatABnet is the state-of-the art model for a
weakly supervised siamese architecture trained on the TIMIT or
an unsupervised architecture trained on the Xitsonga dataset (re-
spectively) using scattering coefficients as input features [17].
For TIMIT, the DNN “topline” is the output of a supervised
neural network trained as a phone classifier on the TIMIT train
set [3].

and modal voiced consonants which is totally absent in English.
Third, these out-of-domain models happen to beat the previous
in-domain state of the art (trained with the same general archi-
tecture). On TIMIT the single output triamese network trained
on pairs of words has a phone across speaker ABX (9.2%)
which is equivalent to the in-domain supervised phone classi-
fier DNN.

4. Conclusion
We have demonstrated that a siamese or triamese architecture,
together with a weak supervision using only same-different in-
formation regarding word and speaker identity can learn em-
beddings that are very selective in one dimension and invariant
in the other: indeed, our best embeddings showed around a 10%
error rate in one task and near chance in the other. Moreover,
we showed that it was possible to learn these two orthogonal
embeddings within the same network (ie, a network that carried
out the two tasks using the same connections, except the last
layer), thereby demonstrating effective disentanglement of pho-
neme and speaker information. Finally, we showed that these
disentangling networks could generalize their performance in
out-of-domain datasets (a different English dataset, and a dif-
ferent, under-resourced, language), even beating the state of the
art in these languages.

In detail, the double-output networks differed somewhat
from the single-output ones. In particular, whereas the speaker
task benefited consistently from the joint training, this was not
the case for the phone task. This asymmetry may be related to
the observed finding that speaker ID systems based on i-vectors
improve their performance if they use phone embeddings as in-
puts as opposed to raw MFCC [19, 20]. Reciprocally, the bene-
fit of speaker normalization in state of the art DNN-based ASR
has been more elusive. Further work is necessary to understand
this asymmetry and to further improve representation disentan-
glement.
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