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Abstract 

This paper describes the systems developed by the Department 
of Electronic Engineering of Tsinghua University for the NIST 
Language Recognition Evaluation 2015. We submitted one 
primary and three alternative systems for the fixed training 
data evaluation and didn't take part in the open training data 
evaluation for our limited data resources and computation 
capability. Both the primary system and three alternative 
systems are fusions of multiple subsystems. The primary 
system and alternative systems are identical except for the 
training, development and fusion data. The subsystems are 
different in feature, statistical modeling or backend approach. 
The features of our subsystems include MFCC, PLP, TFC, 
PNCC and Fbank. The statistical modeling of our subsystems 
can be roughly categorized into four types: i-vector, deep 
neural network, multiple coordinate sequence kernel (MCSK) 
and phoneme recognizer followed by vector space models 
(PR-VSM). The backend approach includes LDA-Gaussian, 
SVM and extreme learning machine (ELM). Finally, these 
subsystems are fused by the FoCal toolkit. Our primary system 
is presented and briefly discussed. Post-key analyses are also 
addressed, including comparison of different features, 
modeling backend approaches and a study of their contribution 
to the whole performance. The processing speed for each 
subsystem is also given in the paper. 

Index Terms: NIST LRE 2015, spoken language recognition, 
deep neural network, bottleneck, i-vector 

1. Introduction 

This paper describes the systems developed by the Department 
of Electronic Engineering of Tsinghua University (THU-EE) 
for the NIST Language Recognition Evaluation (LRE) 
2015 [1]. 

The NIST LRE 2015 included 20 languages and featured 6 
language clusters: Arabic (Egyptian, Iraqi, Levantine, 
Maghrebi, Modern Standard), Chinese (Cantonese, Mandarin, 
Min, Wu), English (British, General American, Indian), 
French (West African, Haitian Creole), Slavic (Polish, Russian) 
and Iberian (Caribbean Spanish, European Spanish, Latin 
American Spanish, Brazilian Portuguese). Different from the 
past NIST LREs [2,3], the NIST LRE 2015 tried to make 
progress in the context of languages that are similar to each 
other and frequently mutually intelligible. It was emphasized 
by defining a new performance metric which only considered 
distinguishing languages within each cluster. From the view of 
linguistics and historical NIST LRE experiences, the language 
belongs to the same cluster are apt to be confusable languages. 
Thus, one feature of the NIST LRE 2015 was to distinguish 
confusable languages. Another feature was the segment 
duration. Segments were selected to cover a broad range of 

speech durations, not limited to approximately 3 seconds, 10 
seconds, or 30 seconds. 

Currently, there are two dominant approaches to spoken 
language recognition: acoustic and phonotactic. The acoustic 
systems are based on short time spectral features. Our acoustic 
subsystems not only include some of cutting edge approaches, 
such as deep neural network (DNN), convolution neural 
network (CNN), long short term memory (LSTM) and 
i-vector [4], but also are designed to explore noise robust 
features, high order statistics and more effective backend 
approaches. The phonotactic systems are based on lattices of 
tokens extracted by phone recognizers [11,12]. Our 
phonotactic subsystem is a triphone-VSM-SVM subsystem 
based on the phone decoder developed by our lab. 

The rest of the paper is organized as follows. Section 2 
illustrates data used for the NIST LRE 2015. Section 3 
describes our submitted systems. We put more emphasize on 
the cutting edge methods and our novel parts. Section 4 details 
system configurations. Post-key experiments are conducted to 
examine our primary, alternative and subsystem performance.  
A brief analysis is also discussed based on the experimental 
results. 

2. Training and development data 

NIST provided a training and development dataset specifically 
collected for the fixed training data condition [1]. This dataset 
contains two parts. The first part contains segments with word 
alignment from Switchboard-1 for training NN-related models. 
The second part includes 3511 full 2-channel telephone calls 
(CTS) and segments extracted from broadcast recordings 
containing narrow-band speech (BNBS) for 20 target 
languages. The hours of training speech for each target 
language are not balanced. For example, the Arabic-Modern 
Standard language has 0.5 hours while the Arabic-Levantine 
language has 41.1 hours.  
We randomly split the second part into two sets: lre15-train 
(5262 utterances) was used to train language models and 
lre15-dev (1760 utterances) was used to do self-evaluation and 
estimate backend and fusion parameters. To mitigate the 
degradation caused by the length variation, we cut each 
segment into 3-60 seconds. 
Our primary system used both the lre15-train and lre15-dev 
for training and used the lre15-dev for self-evaluation, fusion 
and calibration. The alternative-1 and alternative-2 systems 
were the same to the primary system except for the usage of 
data. The alternative 2 system used the lre15-train to train 
system and used the lre15-dev to perform self-evaluation, 
fusion and calibration. The alternative-1 system used the 
lre15-train utterances to train system but the fusion parameters 
were the same to the alternative-2 system. The alternative-3 
system was the same to the alternative-2 system but without 
PRVSM-SVM subsystem. 

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-7913294



2.1. Data re-usage  

As we stated, our primary system used both the lre15-train 
and lre15-dev for training and did self-evaluation on the same 
lre15-dev. If the training and self-evaluation used the same 
segments, the self-evaluation results were likely to be over 
optimistic, especially for subsystems using SVM as classifiers. 
We took random segmentation strategy to produce two 
datasets on the same lre15-dev. One was for the training and 
the other was for the self-evaluation. Experimental results had 
shown that this simple data re-usage strategy could avoid over 
optimistic results, thus provided relatively reliable parameters 
for subsystem fusion.  

3. System 

Our primary system is a linear fusion of 19 subsystems, see 
Figure 1, Table 1. We take Fbank, MFCC, RASTA, SDC, 
GMM, i-vector, SVM, LDA and Gaussian as common 
configurations [13,14]. Details about them are presented in the 
next section. Here, we put more emphasize on the cutting edge 
methods and our novel parts.  

 

Figure 1. Primary system framework for NIST LRE 2015 

Table 1. Subsystems for NIST LRE 2015 

tag brief description 

1 fbank_dnn_bn_mix2048_ivec400_lda19_gaussian 

2 fbank_dnn_bn_mix2048_ivec400_lda19_svm 

3 fbank_dnn_bn_mix2048_ivec400_ELM 

4 fbank_cnn_bn_mix2048_ivec400_lda19_gaussian 

5 fbank_cnn_bn_mix2048_ivec400_lda19_svm 

6 fbank_cnn_bn_mix2048_ivec400_ELM 

7 fbank_lstm_bn_mix2048_ivec400_lda19_gaussian 

8 fbank_lstm_bn_mix2048_ivec400_lda19_svm 

9 
fbank_dnn_bn_align_sdc_mix2048_ivec400_lda19
_gaussian 

10 mfcc_sdc_mcsk_mix64_svm 

11 mfcc_sdc_mix1024_ivec400_lda19_gaussian 

12 mfcc_tfc_mcsk_mix64_svm 

13 mfcc_tfc_mix1024_ivec400_lda19_gaussian 

14 pncc_sdc_mcsk_mix64_svm 

15 pncc_sdc_mix1024_ivec400_lda19_gaussian 

16 pncc_tfc_mcsk_mix64_svm 

17 pncc_tfc_mix1024_ivec400_lda19_gaussian 

18 sdc_mix2048_ivec400_lda19_gaussian 

19 pr_vsm_svm 

3.1. imPNCC 

Improved Multitaper Power Normalized Cepstral Coefficients 
(imPNCC) are extracted followed the recipes described in 
the [15]. The PNCC is enhanced with the gamma-chirp 
filterbank and uses a multitaper named multi-peak to improve 
the performance under noise and clean condition. The 
imPNCC uses a frequency domain 40-channel gamma chirp 
filter banks to analyze the segments with 10ms frame shift and 
25ms frame length. Instead of conventional Hamming window, 
imPNCC pre-processes the frame with a multi-peak multitaper 
before short time Fourier transform. The cutoff frequencies of 
the filter-bank are at 0Hz and 4000Hz, respectively. The 
remaining procedure and parameters keep the same to the [15]. 
The extraction flow chart is shown as Figure 2 (left). 

3.2. TFC 

Time frequency cepstral (TFC) feature extraction is performed 
as follows, see Figure 2 (right): 9 successive frames of basic 
features are extracted first to form a cepstral matrix. Then a 
DCT is implemented on the cepstral matrix in the temporal 
direction to remove correlation. Finally, the elements (39 dim) 
in the upper-left triangular area are selected by scanning in a 
zigzag order [17]. 

 

3.3. DNN-bottleneck 

The deep neural network (DNN) is a feed-forward artificial 
neural network with multi-hidden layers [6,7]. Bottleneck here 
refers to a hidden layer placed in the middle of the neural 
network which has fewer nodes than other layers. The 
activation of this layer is regarded as the bottleneck feature. 
The DNN is trained to discriminate senones (tied triphone 
states). The input layer of the DNN has 1320 nodes composed 
of 11 frames (5 frames on each side of the frame) where each 
frame consists of 120 Fbank features. The DNN has five 
hidden layers and each hidden layer has 1200 nodes except 
that the fifth hidden layer which is the bottleneck layer has 39 
nodes. The output of the DNN with respect to senones has 
2227 nodes. After the extraction of the bottleneck features, 

Figure 2. Flow charts of imPNCC (left) and TFC (right) 
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they are fed into the traditional total variability matrix to 
extract 400 dim i-vectors, see Figure 3 (left). 

3.4. DNN-bottleneck-align 

The DNN-bottleneck-align model is the same as [18] proposed 
in speaker verification. During i-vector modeling, a GMM is 
trained in the traditional unsupervised way using bottleneck 
features to calculate frame posterior probabilities and MFCC-
SDC features are combined with these posterior probabilities 
to calculate sufficient statistics, see Figure 3 (right). 

3.5. CNN-bottleneck 

The Convolutional Neural Network (CNN) contains one 
convolutional layer and four fully-connected layers. For the 
convolutional layer, the filter size is 8 and the number of 
filters for each receptive field is 100. The pooling size is 3. For 
the fully-connected layer, each layer has 1200 nodes and the 
last hidden layer which is the bottleneck layer has 39 nodes. 
The rest CNN-bottleneck model configurations are the same as 
the DNN-bottleneck model. 

3.6. LSTM-bottleneck 

The architecture of the Long Short Term Memory (LSTM) 
model is similar to [19]. It has two LSTM layers. The first 
LSTM layer has 800 cells and 512 recurrent projection units. 
The second LSTM layer has 800 cells and 39 recurrent 
projection units. The activation of the recurrent projection 
units in the second LSTM layer is regarded as the bottleneck 
feature. The rest LSTM-bottleneck model configurations are 
the same as the DNN-bottleneck model. 

3.7. MCSK 

Multiple coordinate sequence kernel (MCSK) can be regard as 
a mixed method of generalized linear discriminant sequence 
(GLDS) kernel and kullback-leibler (KL) kernel [20,21]. The 
GLDS kernel benefits from the high order statistic information 
from spectral feature. On the contrary, the KL kernel benefits 
from the occupation information. The MCSK combines them 
together [22]. For a given spectral feature, the discrimination 
information originates from two sources: the selected 
coordination (mixture component) and its representation (we 
use 2-order polynomials here). The MCSK take advantages 
both of them and demonstrates good performance in low 
computation resources, see Figure 4. 

 

3.8. ELM 

Extreme learning machine (ELM) is a single-hidden layer feed 
forward network which randomly selects input weights and 
hidden neuron biases without training [23]. The output weights 
are analytically determined by the Moore-Penrose generalized 
inverse. Here, the ELM is used as a backend classifier for the 
extracted i-vectors, similar to LDA-Gaussian or SVM backend. 

4. Experiments 

4.1. Configuration 

MFCC features were computed with 25ms frame length and 
10ms frame shift. RASTA and cepstral mean and variance 
normalization (CMVN) were applied in basic MFCC 
computation. Shifted-delta-cepstral (SDC) coefficients consist 
of 7 static MFCC and 49 shifted delta cepstral coefficients, 
under a 7-2-3-7 configuration [13,14]. We randomly selected 
10 hours from lre15-train to train three gender independent 
universal background models (UBM) with 64, 1024 and 2048 
mixture components respectively. The UBM with 64 mixture 
components was used for tag10 subsystem1, the UBM with 
1024 mixture components was used for tag11, tag13, tag15, 
tag17 subsystems, and the UBM with 2048 mixture 
components was used for tag1 to tag9 and tag18 subsystems. 
Each language had at least 0.3 hours. Both the total variability 
matrix and linear discriminant analysis (LDA) matrix were 
trained on the whole lre15-train. The dimensions of i-vector 
and LDA were 400 and 19 respectively. The zero-order and 
centered first-order Baum-Welch statistics were extracted by 
using the UBM. The backend approaches for i-vectors were 
LDA-Gaussian, LDA-support vector machine (SVM) and 
extreme learning machine (ELM). In the LDA-Gaussian 
setting, each language was assumed to be a Gaussian 
distribution with a full covariance matrix shared by all the 
languages. In the LDA-SVM setting, the kernel of SVM was 
linear and the training of target language adopted the one-vs-
the-rest strategy. The ELM setting was similar to the LDA-
SVM setting. The tag19 subsystem was developed using an 
English phone recognizer (GMM-HMM) developed by our lab 
and trained on given Switchboard database. A high-
dimensional phonotactic feature vector with the phone 3-gram 
statistics was obtained by the lattice-tool of SRILM [24]. Our 
19 subsystems were fused using multiclass logistic regression 
by the FoCal toolkit [25]. For each system, the performance is 
evaluated using the metric ( ) defined by the NIST 
LRE 2015 [1]. 

                                                                 
 1See Table 1

 

Figure 4. Motivation of MCSK 

Figure 3. Bottleneck + i-vector (left) and bottleneck 
alignment + SDC + i-vector (right) 
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4.2. Result 

The minimum average costs of the THU
alternative systems are shown in Table 2. 
contribution of each method, Table 3 gives
performance. Figure 5 also presents our primary system’s 
performance on each language cluster.  

Table 2. Experimental results on the self-
evaluation data 

min Cavg Self-eval 

Primary 0.01348 

Alternative1 0.01542 

Alternative 2 0.01733 

Alternative 3 0.01985 

Table 3. Experimental results of THU-EE 
the self-evaluation and evaluation data 

Tag Self-eval Eval Tag Self

1 0.06544 0.2225 11 0.09479

2 0.09164 0.2154 12 0.06920

3 0.07405 0.2340 13 0.08466

4 0.06592 0.2211 14 0.08719

5 0.09548 0.2182 15 0.09956

6 0.07258 0.2353 16 0.08006

7 0.08552 0.2271 17 0.08098

8 0.11561 0.2353 18 0.09736

9 0.10217 0.2675 19 0.1205

10 0.08280 0.2931  

Figure 5. Performance comparison of THU
system on different language clusters 

4.3. Speed 

The speed test was performed on one core of 
2640. Our primary system was about 1.5 real
NN-related subsystem was about 0.1 RT. The traditional 
+ i-vector subsystem was about 0.03 RT. The 
subsystem was about 0.005 RT. And t
subsystem was about 0.3 RT.  

4.4. Analysis 

No significant differences in performance can 
the four developed systems from the Table 2
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The minimum average costs of the THU-EE primary and 
alternative systems are shown in Table 2. To analyze the 
contribution of each method, Table 3 gives each subsystem’s 

also presents our primary system’s 

evaluation and 

Eval 

0.2093 

0.2142 

0.2048 

0.2076 

EE subsystems on 

Self-eval Eval 

0.09479 0.3087 

0.06920 0.2848 

0.08466 0.3027 

0.08719 0.3009 

0.09956 0.3210 

0.08006 0.2828 

0.08098 0.3090 

0.09736 0.2860 

0.1205 0.3245 

  

 

Performance comparison of THU-EE primary 

performed on one core of Intel Xeon E5-
real-time (RT). The 
The traditional SDC 

about 0.03 RT. The MCSK 
about 0.005 RT. And the PRVSM-SVM 

in performance can be found among 
Table 2. Although we 

adopt data re-usage strategy, the primary system is still a little 
more optimistic on the self-evaluation dataset. Perhaps, if we 
reserve more data for lre15-dev
re-usage would become more obvious.
From the Table 3, we find that: 

(1) ImPNCC is worse than MFCC by comparing 
with tag14-17 subsystems. Perhaps, the speech quality of 
this evaluation is relatively good while imPNCC is more 
suitable for noisy speech. 

(2) TFC is better than SDC by comparing 
with tag10,11,14,15 subsystems. TFC 
joint time-frequency informati
kind of long-term feature. 

(3) By comparing tag1,4,7, tag2,5,
the SVM backend is better than the 
And the Gaussian backend is better t
notice that on the self-evaluation dataset, the 
with either Gaussian or ELM backend is better than the 

 with SVM backend. On the evaluation dataset, 
the SVM performs better. We p
First, the SVM has better generalization ability than the 
Gaussian and ELM. Second
evaluation and evaluation data 
further proved by our results on language cluster

(4) NN-related subsystems are the most effective 
comparing tag1-9 with tag10
neural network is good at extracting complicated and 
intrinsic structure from speech. It provide
effective description than SDC for language recognition. 
That’s the reason why NN-related subsystems outperform 
other subsystems with a reasonable improvement
surprise, the DNN, CNN and LSTM have similar 
performances. They have different unit structure
connection networks. The CNN is more suitable for 
spatial signal and the LSTM is mo
signal. However, the 
in the NIST LRE15 evaluation data. 
language information can be well 
them.  

(5) By comparing tag12 subsystem and 
MCSK has a similar performance with 
lower computation cost. The success of MCSK means 
that language information may be further investigated 
from the consideration of higher

Figure 5 gives performance comparison of our primary system 
on different language clusters. On the self
the primary system works best on the 
worst on the qsl language cluster. On the evaluation dataset, 
the same system works best on the 
worst on the fre language cluster. The 
evaluation and evaluation dataset is still a big problem for 
system calibration or fusion. We should do 
find and measure the mismatch. Besides
emphasize on the generalization ability 
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usage strategy, the primary system is still a little 
evaluation dataset. Perhaps, if we 

dev, the advantages of data 
usage would become more obvious. 

 

e than MFCC by comparing tag10-13 
Perhaps, the speech quality of 

evaluation is relatively good while imPNCC is more 

TFC is better than SDC by comparing tag12,13,16,17 
subsystems. TFC can benefits from 

frequency information. Besides, TFC is also a 
 

tag2,5,8 and tag3,6 subsystems, 
is better than the Gaussian backend. 

Gaussian backend is better than the ELM. We 
evaluation dataset, the  

ith either Gaussian or ELM backend is better than the 
with SVM backend. On the evaluation dataset, 

We provide two explanations. 
e SVM has better generalization ability than the 

Second, the statistics of self-
valuation and evaluation data are different, which is 

further proved by our results on language clusters.  

related subsystems are the most effective methods by 
tag10-18 subsystems.  Deep 

network is good at extracting complicated and 
structure from speech. It provides a more 

SDC for language recognition. 
related subsystems outperform 

with a reasonable improvement. To our 
he DNN, CNN and LSTM have similar 

have different unit structures and 
The CNN is more suitable for 

spatial signal and the LSTM is more suitable for temporal 
 of them are very similar 

in the NIST LRE15 evaluation data. Perhaps, the 
language information can be well captured by either of 

subsystem and tag18 subsystem, the 
MCSK has a similar performance with the i-vector at a 

The success of MCSK means 
that language information may be further investigated 

higher-order statistics. 

performance comparison of our primary system 
On the self-evaluation dataset, 

the primary system works best on the fre language cluster and 
language cluster. On the evaluation dataset, 

the same system works best on the qsl language cluster and 
language cluster. The mismatch of self-

evaluation and evaluation dataset is still a big problem for 
e should do more research to 

find and measure the mismatch. Besides, we should put more 
ability of statistical modeling. 
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