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Abstract 
Dysarthria is a neuro-motor speech disorder that impedes the 
physical production of speech. Patients with dysarthria often 
have trouble in pronouncing certain sounds, resulting in 
undesirable phonetic variation. Current automatic speech 
recognition systems designed for the general public are 
ineffective for dysarthric sufferers due to the phonetic variation. 
In this paper, we investigate dysarthric speech recognition using 
Kullback-Leibler divergence-based hidden Markov models. In 
the model, the emission probability of state is modeled by a 
categorical distribution using phoneme posterior probabilities 
from a deep neural network, and therefore, it can effectively 
capture the phonetic variation of dysarthric speech. 
Experimental evaluation on a database of several hundred 
words uttered by 30 speakers consisting of 12 mildly dysarthric, 
8 moderately dysarthric, and 10 control speakers showed that 
our approach provides substantial improvement over the 
conventional Gaussian mixture model and deep neural network 
based speech recognition systems.  
Index Terms: dysarthria, Kullback-Leibler divergence-based 
hidden Markov model, speech recognition 

1. Introduction 
Dysarthria is a neuro-motor speech disorder resulting from 
neurological injury of the motor speech system [1], [2]; 
dysarthria damages the physical production of speech, 
rendering it unintelligible. Dysarthria is often accompanied 
with a physical disability such as cerebral palsy that limits the 
speaker’s capability to communicate through computers and 
electronic devices. Although an automatic speech recognition 
(ASR) system is essential for dysarthria sufferers, current ASR 
systems for the general public are not well-suited to dysarthric 
speech because of acoustic mismatch resulting from their 
articulatory limitation [3]. In other words, dysarthric individuals 
often fail to pronounce certain sounds, leading to undesirable 
phonetic variation which is the main cause of performance 
degradation.  

Related works on the recognition of dysarthric speech have 
been mostly focused on acoustic modeling to capture the 
acoustic cues of disordered speech. Hasegawa-Johnson et al. [4] 
compared ASR systems based on Gaussian mixture model-
hidden Markov models (GMM-HMMs) and support vector 
machines (SVMs). They reported that HMM-based models may 
provide robustness against large-scale word-length fluctuations 
and SVM-based models can handle the deletion or reduction of 
consonants. Rudzicz [5], [6] compared several acoustic models 
including GMM-HMM, artificial neural networks (ANNs), 

conditional random field, and SVMs. Their experimental results 
show that discriminative models such as ANNs produced better 
phoneme classification accuracy than GMM-based generative 
acoustic models. Further, an ANN-HMM hybrid approach in 
which HMM states are modeled by ANNs was presented to 
improve the recognition performance of disordered speech [7].  

Another research direction is to handle the phonetic 
variation of dysarthric speech in an explicit or implicit way. 
Explicit phonetic variation modeling generally creates multiple 
pronunciations for each word in the lexicon. Mengistu and 
Rudzicz [8] manually made a pronunciation lexicon for each 
individual with dysarthria through expert assessment of the 
individual’s pronunciation. Christensen et al. [9] automatically 
generated a speaker-specific pronunciation dictionary using 
phoneme posterior probabilities of a deep neural network 
(DNN), which is an ANN with multiple hidden layers, trained 
on normal speech. Also, weighted finite state transducers 
(WFSTs) were built using phonetic confusion matrices resulting 
from a normal ASR system to allow phonetic variation during 
decoding process [10], [11]. Implicit modeling, on the other 
hand, depends on the underlying acoustic-phonetic models to 
account for phonetic variation, such as model parameter tying 
[28], and therefore it can remove the necessity to explicitly 
determine and represent phonetic variation in the lexicon. 
Although implicit phonetic variation modeling is promising, it 
has rarely been investigated in the field of dysarthric speech 
recognition.  

Recently, Kullback-Leibler divergence-based HMM (KL-
HMM) [12], [13] has been emerging since KL-HMM is a very 
powerful and flexible framework in achieving implicit phonetic 
variation modeling. KL-HMM is a particular form of HMM in 
which the emission probability of state is parametrized by a 
categorical distribution of phoneme classes referred as acoustic 
units. Since HMM states are generally represented as subword 
lexical units in the lexicon, KL-HMM can model the phonetic 
variation against target phonemes. For score computation in 
training and decoding, KL divergence-based dissimilarity 
measure between the categorical distribution and phoneme 
posterior probabilities is used. KL-HMM has been successfully 
utilized in various speech recognition applications such as non-
native speech recognition [14], multilingual speech recognition 
[15], and grapheme-based speech recognition [16]. 

In this paper, we investigate the effectiveness of KL-HMM 
for dysarthric speech recognition. To effectively model the 
typical phonetic variation of dysarthric speech, the categorical 
distribution of KL-HMM is trained on speech data from several 
dysarthric talkers using (context-dependent) phoneme posterior 
probabilities obtained from a DNN acoustic model. Several 
DNN-based acoustic models such as normal DNN and DNN 
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adapted on dysarthric speech are compared to explore the 
effectiveness of an acoustic model in training KL-HMM.  

2. Dysarthric speech data  
We collected speech data from 78 native Korean speakers of 
which 68 (40 males and 28 females) were dysarthric and 10 (5 
males and 5 females) were non-dysarthric control speakers. All 
dysarthric speakers were recruited from Seoul National 
Cerebral Palsy Public Welfare and had been diagnosed with 
cerebral palsy, which is one of the most prevalent causes of 
dysarthria [17]. The mean ages of the dysarthric and control 
participants were 36.6 years (standard deviation of 9.7 years) 
and 33.1 years (standard deviation of 3.9 years), respectively.  

All speakers spoke an average of 628 isolated words, 
including repetitions of 37 Assessment of Phonology and 
Articulation for Children (APAC) words, 100 command words, 
36 Korean phonetic codes which are used for identifying the 
Korean alphabet letters in voice communication, a subset from 
452 Korean Phonetically Balanced Words (PBW), and a subset 
from 500 additional command words. Recordings were made in 
a quiet office with a Shure SM12A head-worn microphone at 
16 kHz sampling rate in a mono-channel.  

All participants were diagnosed by a speech-language 
pathologist, who has a top level license for speech therapy and 
has worked in the field over five years, according to the 
percentage of consonants correct (PCC) [18] using the APAC 
words [19]. The APAC words comprised familiar vocabulary 
words composed of one to four syllables and were phonetically 
balanced to partially assess the articulation ability on a phonetic 
basis [20], [21]. Based on this assessment, among the 68 
dysarthric subjects, 37 subjects were graded as mildly 
dysarthric (PCC 85-100%) and 31 subjects were graded as 
moderately dysarthric (PCC 50-84.9%). All control subjects 
were graded as PCC 100%.  

3. KL-HMM framework 
A KL-HMM framework is mainly composed of two models 
[22]: 1) A neural network-based acoustic model which 
represents the relationship between acoustic feature 
observations and acoustic units and 2) a categorical 
distribution-based lexical model which captures a probabilistic 
relationship between the subword lexical units in the 
pronunciation lexicon and the acoustic units. The acoustic units 
can be chosen as context-independent or clustered context-
dependent phonemes.  

3.1. DNN-based acoustic model  
A DNN has been received great attention since the complex 
structure of speech sounds can be modeled through multiple 
layers using powerful optimization techniques such as 
generative layer-wise pretraining and discriminative fine-
tuning, and therefore it has been successfully applied in speech 
recognition as an acoustic model [23]-[25]. It is expected that 
the DNN-based acoustic model may also capture the complex 
acoustic structure of dysarthric speech as well. In this work, we 
used 40 log mel-filterbank energies with 11 context window 
xt={xt-5,…,xt,…,xt+5} as acoustic feature observations and 
clustered context-dependent phonemes, i.e., senones, as output 
units or acoustic units ad. Given the DNN acoustic model, the 
probabilities of acoustic units, i.e., D-dimensional acoustic unit 
posterior probability vectors, can be obtained as  
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Then, the acoustic unit posterior probability vectors are used to 
train categorical distributions in HMM states which correspond 
to the lexical units.  

3.2. Categorical distribution-based lexical model   
KL-HMM is a particular type of HMM where the emission 
probability of state li of a lexical unit is parametrized by a 
categorical distribution yi=[yi1,…,yid,…,yiD]T, where yid=P(ad|li).  
Therefore, each HMM state can capture a probabilistic 
relationship between a lexical unit li and D acoustic units.  

In the KL-HMM framework, the following KL divergence 
between the acoustic unit posterior vector zt and the categorical 
variable yi is used as the local score at each HMM state.  
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Actually, there are a number of ways to obtain the KL 
divergence such as symmetric variant of the KL divergence. 
However, recent studies reported that asymmetric KL 
divergence as in (2) is more robust [15]. Therefore, we used the 
asymmetric version of the KL divergence as the local score in 
this work.  

Given the acoustic unit probability vectors Z=[z1,…,zt,…,zT] 
where T represents the number of frames, the categorical 
variables Y=[y1,…,yi,…,yL]  where L denotes the number of 
lexical units can be trained by minimizing the cost function 
defined by summing the local scores over time t and state li as 
follows:  
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where δti = 1 if xt is associated with state li, otherwise 0. Here, 
the state association of each xt is determined using Viterbi 
forced alignment. To minimize the cost function in (3), we take 
the partial derivative with respect to each variable yi and set it 
to zero. Finally, the optimal state distribution is the arithmetic 
mean of the acoustic unit probability vectors assigned to the 
state given by  
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where Ti denotes the number of frames associated with state li. 
Finally, decoding is performed using the standard Viterbi 
decoder with the KL divergence-based local score defined in (2).  

3.3. Application to dysarthric speech recognition  
KL-HMM has advantages for dysarthric speech recognition. 
First, it can effectively represent phonetic variation through 
categorical distribution-based lexical modeling, which may be 
particularly useful for dysarthric speech. Therefore, it is 
expected that KL-HMM is appropriate in recognizing 
disordered speech. Second, the acoustic model and the lexical 
model can be trained on an independent set of resources [22]. 
For example, the acoustic model can be trained on resources 
from resource-rich domains whereas the lexical model can be 
trained on a relatively small amount of resources from a target 
domain. Using this knowledge, the acoustic model is trained on 
data from a large population with normal speech (or further 
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adapted on dysarthric data) whereas the lexical model is trained 
on a relatively small amount of dysarthric speech data. This 
strategy is reasonable because the size of an acoustic model is 
generally much larger than the size of a lexical model.  

4. Experimental results 

4.1. Experimental setup 
The normal training set includes 300k utterances (about 54 
hours) of 8k Korean isolated words from several databases 
(DBs) consisting of the Korean Phonetically Optimized Words 
(KPOW) DB, Korean Phonetically Balanced Words (KPBW) 
DB, and Korean Phonetically Rich Words (KPRW) DB, which 
are widely used for acoustic modeling in Korea. The dysarthric 
training set includes 20k utterances (about 4 hours) from 48 
dysarthric speakers described in Section 2. Also, the evaluation 
set consists of 23k utterances spoken by 20 dysarthric speakers 
including 12 mild and 8 moderate subjects, and 10 non-
dysarthric control speakers. Specifically, each dysarthric 
speaker utters 5 repetitions of 100 command words and 36 
Korean phonetic codes, and 213 additional command words, i.e., 
a total of 893 utterances. Each control speaker utters 2 
repetitions of 100 command words and 36 Korean phonetic 
codes, and 213 additional command words, i.e., a total of 485 
utterances. The repeated data are obtained in multiple sessions. 
The speakers in the evaluation set are totally separated from the 
training set.  

We compared three ASR systems: GMM-HMM, DNN-
HMM, and KL-HMM systems.  

GMM-HMM system: We first train a normal GMM-HMM 
system (referred as GMMnor-HMM) using 39 dimensional mel-
frequency cepstral coefficients, consisting of 12 cepstral 
coefficients, 1 energy term, and their first and second 
derivatives with frame size of 25 milliseconds and shift size of 
10 milliseconds. The GMMnor-HMM consists of 1480 tied-state 
(senone) left-to-right triphone HMMs, where each HMM has 3 
states and each state is modeled with 16 Gaussian components 
and is trained on the normal training set. The dysarthric GMM 
can be obtained by adapting the GMMnor to dysarthric speech 
using maximum a posteriori (MAP) adaptation on the 
dysarthric training set (referred as GMMnor-MAPdys-HMM).  

DNN-HMM system: A normal DNN is trained using 40 
dimensional log mel-filterbank energy features with a context 
window of 11 frames and frame alignment information 
resulting from the GMMnor-HMM system. The DNN has 3 
hidden layers with 1024 hidden units at each layer and the 1480 
dimensional softmax output layer, corresponding to the number 
of senones of the GMMnor-HMM system. The parameter is 
initialized using layer-by-layer generative pre-training and the 
network is discriminatively trained using backpropagation [26] 
(referred as DNNnor-HMM). To further construct dysarthric 
DNN, linear output network adaptation [27] (DNNnor-LONdys-

HMM) and DNN retraining (DNNdys-HMM) using dysarthric 
training set were considered.  

KL-HMM system: A KL-HMM is trained using DNN 
posterior probability vectors obtained from the dysarthric 
training set and frame alignment information resulting from the 
DNNnor-HMM system. In this work, DNNnor and DNNnor-
LONdys are considered as acoustic models in obtaining posterior 
probability vectors, and therefore, we can refer to these systems 
as DNNnor-KLdys-HMM and DNNnor-LONdys-KLdys-HMM, 
respectively.  

4.2. Effectiveness of context dependency of acoustic 
units and lexical units 
We first examine the effectiveness of context dependency of 
acoustic units (AUs) and lexical units (LUs). Table 1 presents 
the performances of DNNnor-KLdys-HMM systems according to 
the types of AUs and LUs, which are context-independent (CI) 
phonemes or context-dependent (CD) phonemes. The number 
of CI units is 148 (46 phonemes x 3 states + 2 silences x 5 states) 
and the number of CD units (senones) is 1480. Interestingly, the 
CD-LU systems produce better performances than CI-LU 
systems regardless of AU types for both dysarthric and control 
speakers. This is the reason why CD-LU systems can utilize 
more temporal information and more target lexical units. When 
both context-dependent acoustic and lexical units are used, we 
can obtain the best results for dysarthric and control speakers. 
This implies that various phonetic variation can be properly 
modeled through KL-HMM. In the following experiments, CD 
units are used as AUs and LUs.  

4.3. Effectiveness of DNN-based acoustic model 
Table 2 compares the performances of DNNnor-HMM and 
DNNnor-KLdys-HMM systems by varying the number of DNN 
hidden layers for dysarthric and control speakers. While the 
number of hidden layers increases, the speech recognition 
performances are improved for both dysarthric and control 
speakers on both systems. In addition, we can observe both 
DNNnor-HMM and DNNnor-KLdys-HMM show the best 
performances when the DNN with 3 hidden layers that produces 
the lowest WER is chosen as an acoustic model. This indicates 
that choosing a better acoustic model is important in achieving 
better performance in KL-HMM as well. In addition, DNNnor-
KLdys-HMM outperforms DNNnor-HMM for dysarthric 
speakers whereas its performance is slightly degraded 
compared with DNNnor-HMM for control speakers. This 
implies that the general characteristics of phonetic variability of 
dysarthric speech are reflected to the DNNnor-KLdys-HMM. 
Since there is a trade-off between dysarthric and control 
speakers, reducing the gap is important in improving the 

Table 1. Word error rates (%) of DNNnor-KLdys-HMM 
according to the context dependency of acoustic units 
and lexical units for dysarthric and control speakers. 

LU 
AU 

CI CD 
Dys. Con. Dys. Con. 

CI 43.9 1.4 38.9 1.2 
CD 41.8 1.8 33.4 0.9 

 

Table 2. Word error rates (%) of DNNnor-HMM and 
DNNnor-KLdys-HMM with the number of DNN hidden 

layers for dysarthric and control speakers. 

# of hidden 
layers 

DNNnor-HMM DNNnor-KLdys-HMM 
Dys. Con. Dys. Con. 

1 47.1 0.7 34.8 1.3 
2 45.8 0.7 33.9 1.0 
3 44.8 0.4 33.4 0.9 
4 45.1 0.5 33.6 0.9 
5 45.0 0.6 33.6 0.9 
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compatibility of an ASR system. In the following experiments, 
the DNN with 3 hidden layers is used as the default system for 
the remainder of this paper.  

4.4. Effectiveness of KL-HMM 
Table 3 shows the performances of GMM-HMM, DNN-HMM, 
and KL-HMM systems for both dysarthric and control speakers 
in terms of the word error rate (WER). Also, we measured 
unweighted average WERs across dysarthric and control 
speakers to evaluate the compatibility of each ASR system for 
universal access. For the comparison of GMMnor-HMM and 
DNNnor-HMM systems, the performance of the DNNnor-HMM 
is better than with the GMMnor-HMM for both dysarthric and 
control speakers. This implies that the DNN acoustic model is 
more effective in recognizing speech uttered by control 
speakers as well as patients with dysarthria. It is also observed 
that the systems trained on dysarthric data such as DNNnor-
LONdys-HMM produce better results than with systems trained 
on only normal data in terms of the unweighted average WER. 
The performance of DNNnor-LONdys-HMM is slightly better 
than with DNNdys-HMM. Since the amount of dysarthric 
training data is quite small in training all hidden layers, it is 
better to adapt DNN with LON adaptation. For the evaluation 
of our KL-HMM approach, DNNnor-KLdys-HMM outperforms 
DNNnor-LONdys-HMM for both dysarthric and control speakers, 
producing 5.8% relative improvement in the average WER 
reduction. In DNNnor-LONdys-KLdys-HMM, we can achieve the 
lowest WER on dysarthric speakers, obtaining 12.2% relative 
improvement over DNNnor-LONdys-HMM, while for control 
speakers the performance is comparable. Through these 
experiments, we found that the KL-HMM approach is very 

effective for dysarthric speakers while keeping comparable 
performance for control speakers. Also, a good acoustic model 
that is better fitted to dysarthric speech is more appropriate in 
modeling KL-HMM.  

4.5. Evaluation with the amount of training data 
Next, we perform experiments with varying the amount of 
dysarthric training data for control, mildly dysarthric, and 
moderately dysarthric speaker groups in Figure 1. To this end, 
DNNnor-LONdys-HMM, DNNnor-KLdys-HMM, and DNNnor-
LONdys-KLdys-HMM are exploited. As can be seen, the KL-
HMM approach consistently outperforms DNNnor-LONdys-
HMM regardless of the amount of training data for all speaker 
groups. Specifically, when the amount of available training data 
gets small, the performance improvement of KL-HMM gets 
large over DNNnor-LONdys-HMM for dysarthric speakers. 
Through this experiment, we also found that KL-HMM is more 
robust on the data sparseness problem.  

5. Conclusions  
In this paper, we investigated the effectiveness of KL-HMM to 
improve the recognition performance of disordered speech. To 
deal with phonetic variation resulting from the limitation of 
articulatory movement, the KL-HMM framework composed of 
DNN acoustic modeling and categorical distribution-based 
probabilistic lexical modeling was exploited. In order to 
evaluate the effectiveness of our approach, a series of 
experiments were performed in terms of the WER on both 20 
dysarthric and 10 control speakers. Experimental results 
showed that the KL-HMM approach provides significant 
improvement over the conventional ASR systems based on 
DNN-HMM when even a small amount of dysarthric training 
data is available. In this work, we tried to develop a speaker-
independent speech recognition system for people with 
dysarthria by modeling the typical phonetic variation of 
dysarthric speech. Dysarthric speakers often have their own 
phonetic and articulatory variation patterns. Thus our further 
work includes applying speaker adaptation techniques and 
using articulatory information [29] on the KL-HMM framework.  
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(a) (b) (c)  

Figure 1: Performance evaluation with the amount of dysarthric training data from 0.5 hours to 4 hours for (a) control, (b) 
mildly dysarthric, and (c) moderately dysarthric speakers. 
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Table 3. Performance comparison of GMM-HMM, 
DNN-HMM, and KL-HMM systems. 

ASR system 
WER (%) 

Dys. Con. Avg. 

GMMnor-HMM 51.1 0.7 25.9 

GMMnor-MAPdys-HMM 42.3 1.5 21.9 

DNNnor-HMM 44.8 0.4 22.6 

DNNnor-LONdys-HMM 35.3 2.0 18.7 

DNNdys-HMM 35.5 2.2 18.9 

DNNnor-KLdys-HMM 33.4 0.9 17.2 

DNNnor-LONdys-KLdys-HMM 31.0 2.1 16.6 
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