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Abstract 
 This paper presents a two stages artificial bandwidth 

extension (ABE) framework which combine deep bidirectional 
Long Short Term Memory (BLSTM) recurrent neural network 
with exemplar-based sparse representation to estimate missing 
frequency band. It demonstrates the suitability of proposed 
method for modeling log power spectra of speech signals in 
ABE. The BLSTM-RNN which can capture information from 
anywhere in the feature sequence is used to estimate the log 
power spectra in the high-band firstly and the exemplar-based 
sparse representation which could alleviate the over- 
smoothing problem is applied to generated log power spectra 
in the second stage. In addition, rich acoustic features in the 
low-band are considered to reduce the reconstruction error. 
Experimental results demonstrate that the proposed framework 
can achieve significant improvements in both objective and 
subjective measures over the different baseline methods. 
Index Terms: BLSTM-RNN, artificial bandwidth extension, 

rich acoustic features, exemplar-based sparse representation 

1. Introduction 
Although intelligibility of the narrowband speech is acceptable, 
wideband speech contains frequency components beyond the 
telephone band. The missing frequency band carries spectrally 
rich information for the speech signal. Upgrading to wideband 
speech communication requires the thorough structure to be 
redesigned, which is a huge burden. For this purpose, artificial 
bandwidth extension (ABE) has been studied widely to 
improve quality of the narrowband speech [1, 2]. They attempt 
to regenerate the missing spectral content at the receiver based 
on narrowband speech input.  

Most of ABE methods use the source-filter model of 
speech production to estimate wideband spectral envelopes 
and excitation signal independently. As it is stated in [2], an 
extension of the spectral envelope has greater contribution to 
the perceived speech quality compared to the extension of the 
excitation. Therefore, more emphasis is given to the extension 
of the spectral envelope. However, the vocoder will lead to 
degradation of speech quality in source-filter model based 
ABE. To solve this problem, log power spectra and phase 
spectra are extended from the narrowband speech. The log 
power spectra in the high-band are estimated using features 
extracted from the narrowband speech [3]. Features indicate 
the low-band spectral shape are typically used which include 
spectral vectors [4], mel-frequency cepstral coefficients 
(MFCC) [5] and line spectral frequencies (LSF) [6]. 

A large number of ABE model are already proposed. 
Enbom and Kleijn use vector quantization (VQ) to the spectral 
envelope of the wideband signal [7]. The generated spectral 
envelope may be discontinuous in VQ method. Kim and Park 
accomplish the goal of ABE using Gaussian mixture model 
(GMM) [8]. GMM will lead to over-smoothing problem. Jax 
and Vary suggest the usage of HMM for wideband feature 
estimation [2] which the temporal trajectory of speech 
parameters could be captured. A straightforward ABE method 
based on sum product network (SPN) was described and 
evaluated in [9]. The SPN is regarded as observation models in 
HMMs modeling. The algorithm is robust and computationally 
inexpensive [10]. Deep learning has emerged as a new area of 
machine learning research [11]. It can discover the underlying 
regularity of multiple features, and have strong generalization 
abilities than shallow models [12]. The restrict Boltzmann 
machine (RBM) was used to build a deep belief network 
(DBN) [13] in ABE. The log power spectra [14] and spectral 
envelope [15] in the high-band could be regenerated based on 
RBM-DBN. The Long Short-Term Memory Recurrent Neural 
Network (LSTM-RNN) model [16, 17] was devised to better 
find and exploit long-range context using special memory cells 
compared to RBM-DBN. It can also be stacked together in 
multiple layers and to have deep structure in space. It has been 
shown to efficiently model a self-learned amount of feature-
level context and to be highly beneficial to voice conversion 
[18] and speech synthesis [19]. Therefore, BLSTM-RNN 
could be suitable for speech generation problems. The 
exemplar-based sparse representation has been proposed to 
model the high-resolution spectra directly for voice conversion 
[20] and speech enhancement [21]. This method assumes that 
a target spectrogram can be generated from a small set of basis 
target spectra through a weighted linear combination. In this 
way, the target spectrogram is generated from the real target 
speech exemplars rather than generated from model 
parameters. It is an effective method as post-processing step in 
speech generation [22].  

In this study, we present a novel ABE method to learn the 
complex mapping relationship from narrowband speech to 
wideband speech. We demonstrate the suitability of proposed 
method for modeling log power spectra of speech signals 
using in the application of ABE. We propose to use two stages 
to perform ABE. In the first stage the BLSTM-RNN is used to 
produce the log power spectra in the high-band. In the second 
stage, the exemplar-based sparse representation is applied to 
generated log power spectra. Our two-stage approach is 
compared to different baseline approaches, including SPN, 
RBM-DBN and BLSTM-RNN. 
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2. Proposed method 
In this section, we firstly introduce the framework of the 
proposed ABE method. Subsequently, the further details are 
presented. The flowchart of proposed algorithm is shown in 
Figure 1.   
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           Figure 1: Block diagram of the proposed method 
There are total four parts in the proposed method which 

includes features extraction, BLSTM-RNN training with rich 
acoustic features, exemplar-based sparse representation and 
wideband speech reconstruction. In features extraction stage, 
the original speech is divided into overlapping frames; the 
different features are extracted for each frame. For BLSTM-
RNN training, a regression BLSTM-RNN is trained for 
mapping from the narrowband speech features to the wideband 
speech features. The exemplar-based sparse representation is 
applied to generated log power spectra in the high-band to 
alleviate the over-smoothing problem. Therefore, the log 
power spectra in the high-band could be predicted in two 
stages. The speech signal is reconstructed according to 
predicted frequency spectra in the high-band and original 
frequency spectra in the low-band. 

2.1. Features extraction 
The input signal is narrowband speech sampled at 8 kHz. It is 
up sampled to the sampling rate of 16 kHz, prefiltered with a 
low pass filter, and windowed into 32 ms frames with 16 ms 
overlap using a Hamming window. The up sampled signal is 
used for extracting both log power spectra and phase spectra in 
the low-band. The target signal is wideband speech sampled at 
16 kHz and it is used for extracting log power spectra which 
the high-band are used for BLSTM-RNN model training and 
the full-band are applied to dictionary learning.  

We apply BLSTM-RNN to combine the multiple-features 
and reconstruct the log power spectra in the high-band for the 
stronger information fusion ability. The selected acoustic 
features include MFCC, LSP and band pass voicing coefficient 
(BPVC) [23]. The above mentioned features show high 
correlation to the log power spectra. The dimensions of the 
different acoustic features are referred in [3]. 

2.2. BLSTM-RNN training with rich features 
The Deep BLSTM-RNN can model the deep representation of 

long-span acoustic features for ABE. A BLSTM layer consists 
of a number of recurrently connected such memory blocks 
which could solve gradient vanish and gradient expansion 
problem. Each block contains the connected memory cells and 
three multiplicative units, which could respectively provide 
write, read, reset operation for the cells. The surrounding 
network can only interact with the memory cells via the gates. 
Two separate recurrent hidden layers are operating in opposite 
directions, thus providing access to long-range context in both 
input directions. The rich acoustic features are selected as the 
input in BLSTM-RNN and transformed according to equation 
(1) and (2): →ℎ�1 = ℋ ���→ℎ1 �� + �→ℎ1→ℎ1

→ℎ�−11 + 	→ℎ1 
              (1) 
←ℎ�1 = ℋ ���←ℎ1 �� + �←ℎ1←ℎ1

←ℎ�+11 + 	←ℎ1 
              (2) 
where x represents the acoustic features in the low-band, h

�

 
and h

�

 are hidden vector for forward sequence and backward 
sequence respectively, ℋ is the activation function of hidden layer, W is the weight matrix, b is the bias vectors, t indicates frame index, and 1 indicates the first hidden layer. 

Deep bidirectional RNN can be established by stacking 
multiple RNN hidden layers on top of each other and 
transform the input sequence. The iterative process is: →ℎ�� = ℋ ��→ℎ� −1→ℎ�

→ℎ��−1 + �→ℎ� →ℎ�
→ℎ�−1� + 	→ℎ� 
        (3) 

←ℎ�� = ℋ ��←ℎ� −1←ℎ�
←ℎ��−1 + �←ℎ� ←ℎ�

←ℎ�+1� + 	←ℎ� 
        (4) 

� = �→ℎ� 


→ℎ�� + �←ℎ� 

←ℎ�� + 	
                         (5) 

where N represents the number of hidden layers, y is the log 
power spectra in the high-band, and n indicates hidden layers 
index.  

The weights of BLSTM-RNN are trained by using pairs 
of input features xt and output features yt extracted from 
training data to minimize the errors between the mapped 
output from the given input and the target output. The Back-
propagation through time (BPTT) algorithm is applied to both 
forward hidden nodes and backward hidden nodes, and back-
propagates layer by layer. The weight gradients are computed 
over the entire utterance. The output features of BLSTM-RNN 
should be transformed back as follow: 
�′ (�) = 
�(�) × �(�) × �(�) + �(�)             (6) 
where m(d) and v(d) are the d-th component of the mean and 
variance of the output feature, �(�) could be used to lift the 
variance of the reconstructed log power spectra proposed in 
[3], and 
�′ (�) represents the reconstructed log power spectra 
in the high-band. 

The effective learning capability of BLSTM-RNN is 
expected to benefit ABE. Deep-layered architectures can 
represent high level representation of input features [24] and 
BLSTM-RNN can capture information from anywhere in the 
feature sequence. Therefore, the functions can be compactly 
represented with deep BLSTM-RNN which can outperform 
both shallow architecture model and RBM-DBN model. 

2.3. The exemplar-based sparse representation 
The generated log power spectra based on BLSTM-RNN 
inevitably contain distortion that may negatively affect the 
perceptual quality of the speech signal. To combat this effect, 
a sparse representation approach is used to reconstruct the log 
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power spectra in the high-band. This method could model 
high-resolution spectra for spectral details, it has been 
proposed for voice conversion [20] and speech enhancement 
[21]. 

The generated wideband speech can be represented as a 
sparse linear combination of basis vectors [25]. Each segment 
of spectra can be modeled independently using the same 
dictionary. Given a dictionary � ∈ ��×�  and activation 
matrix � ∈ ��×� , the log power spectra � ∈ ��×� , are 
approximated as � × �. Letting A=[ a1, a2,… , aT ], Z=[ z1, 
z2,… , zT ], D=[ d1, d2,… , dK ], then 

1 2 1 2 1 2[ , ...... ] [ , ...... ][ , ...... ]T K Tz z z d d d a a a�          (7) 
where at represents the sparse coefficient vector, dk is basis 
vector in the dictionary, zt indicates the log power spectra of 
wideband speech which covers with original low-band and 
generated high-band by BLSTM-RNN, T is the number of frame, K is the number of basis vectors, and N is the 
dimension of log power spectra. N is set to 257 in this paper. 
The important steps in sparse representations are then to define 
the dictionary, compute the activation matrix for a given log 
power spectra.  

The dictionary D is generated by the concatenation of log 
power spectra of original wideband speech. The dictionary 
training problem is solved via minimization equation (8), 
where one starts with initial guesses for the dictionaries.  

' 2
2 0

1
min || || . . || ||

N

t t t
t

z Da s t a L
�

� ��                 (8) 

where zt′   indicates the log power spectra of original wideband 
speech and N represents the number of frame in training data. 
Subsequently, one alternates between the following two steps: 
(1) the sparse coefficient vectors are updated for fixed 
dictionaries using the orthogonal matching pursuit (OMP) 
algorithm [26]; (2) the dictionaries are updated using the K-
SVD algorithm [27]. Given D and Z, A is found by solving the 
following equation, 

2
2 0arg min || || . . || || , 1t t

a
a z Da s t a L t T� � � � �        (9) 

where L is a parameter that controls sparseness called sparsity 
and T indicates the number of frames in one utterance. Since 
the goal is to approximate the log power spectra of predicted 
speech by BLSTM-RNN using sparse representations, the only 
constraint for L is that it is much smaller than the number of 
basis vectors in the dictionary. In practice, the OMP algorithm 
is adopted to estimate the activation matrix A. With the 
parameters solved, the log power spectra of wideband speech 
are approximated; then the log power spectra in low-band is 
replaced with original log power spectra and the log power 
spectra in high-band is reserved. The full-band is considered in 
the dictionary due to the strong dependency between low-band 
and high-band. Generated log power spectra based on 
BLSTM-RNN is replaced with a sparse linear combination of 
the log power spectra from original wideband speech to 
alleviate the over-smoothing problem. 

2.4. WB speech reconstruction 
To synthesize a time-signal from the bandwidth extended log 
power spectra, we need to associate a phase to the estimated 
magnitude spectra. The extension of the phase spectra has a 
minor role compared to the extension of the amplitude spectra 
in improving the perceived speech quality. In order to recover 
phase information for ABE, we employ a simple, yet effective, 
phase mirroring inversion method for the extension of the 

phase spectrum. The wideband phase is estimated from up 
sampled narrowband phase spectra via mirroring inversion. 

We reconstructed speech signal according to predicted 
frequency spectrum in high-band and original frequency 
spectrum in low-band.  IFFT and Overlap-and-Add (OLA) are 
performed to get the reconstructed WB speech. 

3. Experiments and result analysis 

3.1. Data and analysis methodology 
In this section, we evaluate the proposed approach on ABE 
task. For BLSTM-RNN training, the 5000 utterances selected 
randomly from the TIMIT database were used for training and 
another 1000 randomly selected utterances from the TIMIT 
database [28] were used to optimum model parameter. For 
exemplar-based sparse representation, the 1000 utterances 
were selected randomly to train the dictionary from the TIMIT 
database and another 1000 randomly selected utterances from 
the TIMIT database were used to optimum hyper parameter. 
We compared our proposed ABE algorithm with three 
different baseline algorithms on the GRID corpus [29], where 
we used the test speakers with numbers 1, 2, 18, and 20. The 
test set for our algorithm and different baseline algorithms is 
the same. Feature extraction is performed for each 32 ms with 
50% overlap. The first baseline is the method proposed in [10], 
based on the SPN-HMM. We refer as SPN to this baseline. 
The second baseline is based on the RBM-DBN model [3], 
and referred as RBM-DBN in the following experiment. The 
third baseline is based on the BLSTM-RNN which the sparse 
representations are not considered. We refer as BLSTM. 

The evaluation of ABE system is performed with three 
distinct objective metrics. The frequency weighted segmental 
SNR (fwSNRseg) [30], Itakura-Saito distance (IS) [31] and 
Log Likelihood Ratio (LLR) [32] are employed to compare the 
synthesized wideband speech to the original wideband speech. 
The logarithmic spectral distortion (LSD) is used to evaluate 
the estimated log power spectra in the high-band. In addition, 
we have performed a subjective preference comparison test to 
evaluate the different ABE system. 

3.2. The evaluation of hyper parameter configure 
For BLSTM-RNN, learning rate was set at 0.0005 for the first 
10 epochs, and then decreased by 10% after every epoch. 
Total number of epoch was 20. There are two hidden layers 
and the number of hidden unit is 1024 for each direction. The 
number of cell is set to 800. Input features of BLSTM-RNN 
were normalized to zero mean and unit variance. 

Figure 2 (left) shows the average LSD results on the test 
set using input features with different hidden units (256, 512, 
1024 and 2048) and different the number of hidden layers on 
BLSTM-RNN. The input features include different acoustic 
parameter proposed in [3]. It is clear that the more hidden 
units the BLSTM-RNN were fed with, the better the 
performance could be achieved. But the more nodes also made 
the BLSTM-RNN structure more complicated to learn in 
training. Poor results were obtained if there is one hidden layer, 
which was a kind of shallow model, indicating that the deep 
layer structure is very important to obtain a more generalized 
model. The optimum performance was obtained while the 
number of hidden layer was two. For BLSTM-RNN, the 
reconstructed error is lower compared with the RBM-DBN 
because it can capture information from anywhere. 
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Figure 2 (right) shows the average LSD results on the test 
set using different features in the dictionary with different 
sparsity on exemplar-based sparse representation method. We 
could obtain the lowest reconstruction error while the full-
band features are considered. It could be explained that there is 
strong correlation among different frequency band and the 
features in low-band could contribute to predict the features in 
high-band. The reconstruction error is largest while the low-
band features are considered due to it is a shallow model and 
the low-band and high-band share the same activation matrix. 
The optimum performance was obtained while the sparsity is 
set to 10.  

 
Figure 2: The evaluation of hyper parameter configure, left: 
BLSTM configure, right: sparse representation configure 

3.3. Overall evaluation 

3.3.1. Objective test evaluation 
This test is used to measure the objective quality of estimated 
speech. The fwSNRseg, IS distance and LLR are adopted. 
Tables 1 show the performance of all four ABE methods 
respectively. The proposed method always performs best and 
there is highest fwSNRseg, lowest Itakura-Saito distance and 
Log Likelihood Ratio. 

Table 1. The objective test for different ABE method 

ABE method fwSNRseg LLR IS 
SPN 14.69  0.83 3.14  

RBM-DBN 24.96  0.75 3.03  
BLSTM 26.91 0.72 2.91  

Proposed ABE 27.69 0.67 2.78  

3.3.2. Subjective test evaluation 
During the subjective test, the subjects are asked to indicate 
their preference for each given ABE test pair where the scale 
corresponds to prefer A, no preference and prefer B. The 
subjective preference test includes 10 listeners, who compared 
20 sentence pairs randomly chosen from test database. The 
proposed method is compared with three different baseline 
methods respectively. Test results, given in Figure 3 indicate 
that, speech synthesized with the proposed method 
outperforms the speech synthesized with the different baseline 
methods significantly. Proposed ABE yields a brighter sound 
and produce more clear than three different baseline methods. 

Figure 4 gives an example of one female utterance. The 
spectrograms of the bandwidth-extended speech, using the 
proposed method is shown in Figure 4 (right); the 
spectrograms of the actual wideband speech are also shown in 
Figure 4 (left) to facilitate visual comparison. We observe that 
the proposed algorithm recovers the missing high-frequency 
part of the input narrowband spectrogram reasonably well. 

 
Figure 3: Subjective test for different ABE method 

 
Figure 4: Spectrogram of one female test utterance, left: 
original signal, right: reconstructed signal 

3.4. Discussion 
We introduce novel ABE which combines BLSTM-RNN with 
exemplar-based sparse representation to estimate log power 
spectra. Deep-layered architectures can represent high level 
representation of input features and BLSTM-RNN can capture 
information from anywhere in the feature sequence. The 
exemplar-based sparse representation could alleviate the over- 
smoothing problem. Motivated by the success of two stages 
speech generation on the speech enhancement, we combine 
BLSTM-RNN and exemplar-based sparse representation to 
reconstruct log power spectra in the high-band. The resulting 
system clearly improves the state-of-the-art both in subjective 
performance evaluation and objective performance evaluation. 
We demonstrated that proposed ABE is a promising regression 
model for speech, applying them to ABE. 

4. Conclusions 
In this paper, two stages ABE which combined BLSTM-RNN 
and exemplar-based sparse representation are proposed. 
Among the various BLSTM-RNN configurations, the deep 
architecture is crucial to learn the complex structure of the 
mapping function from narrowband speech to wideband 
speech. It was found that the BLSTM-RNN which can capture 
information from anywhere improves the system performance. 
In addition, the exemplar-based sparse representation was 
effective in solving over-smoothing problem of the 
reconstructed log power spectra. Compared with the different 
baseline method, the proposed framework achieves significant 
improvements in both objective and subjective measures.  

In future studies, we would design the real-time ABE 
system. We also will consider training the model respectively 
according different phone classification. In addition, the phase 
spectra bandwidth extension will also be investigated. 
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