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Abstract
It is difficult to apply well-formulated model-based noise
adaptation approaches to Deep Neural Network (DNN) due
to the lack of interpretability of the model parameters. In
this paper, we propose incorporating a generative front-end
layer (GFL), which is parameterised by Gaussian Mixture
Model (GMM), into the DNN. A GFL can be easily adapted to
different noise conditions by applying the model-based Vector
Taylor Series (VTS) to the underlying GMM. We show that in-
corporating a GFL to DNN yields 12.1% relative improvement
over a baseline multi-condition DNN. We also show that the
proposed system performs significantly better than the noise
aware training method, where the per-utterance estimated noise
parameters are appended to the acoustic features.

Index Terms: automatic speech recognition, noise robustness,
deep neural network, vector Taylor series.

1. Introduction
The performance of both Deep Neural Network (DNN) and
Gaussian Mixture Model (GMM) based acoustic models de-
grades significantly in the presence of background noise or
channel mismatch conditions. This essentially necessitates
noise adaptation. In traditional GMM-HMM systems, plenty of
research has been done for noise robustness over the past two
decades. Methods that have been proposed to address the noise
robustness in GMM-HMM system can be categorized into fea-
ture enhancement and model-based adaptation [1] approaches.
Typical feature enhancement techniques include denoising the
speech features so that they match with the acoustic model
trained on clean data, e.g. [2, 3]. On the other hand, model-
based adaptation techniques distorts the clean model probabil-
ity distribution based on the noisy test input feature, e.g. [4, 5].
However, better recognition accuracy is achieved when the rela-
tion between clean and noisy speech is exploited such as vector
Taylor series (VTS)-based methods [6–10]. Traditional VTS
approaches require a model trained on entirely clean data. To
make use of the multi-condition data a noise adaptive training
(NAT) approach is proposed in [11].

Recently, context-dependent DNN-HMM (CD-DNN-
HMM) [12] has replaced the GMM-based systems due to
the DNN’s capability of modeling arbitrary non-linear dis-
tribution which in turn results better recognition accuracy.
However, there is not much work done for noise robustness in
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DNN-based systems. Usually, feature enhancement techniques
that were proposed for GMM-HMM system, can be applied
to DNN-HMM system as well [13]. Another direction for
noise robustness in DNN-based systems is network adaptation.
One simple yet powerful approach is training the DNN with
multi-style data [14]. In noise aware training (NaT) [14], noise
parameters are estimated by averaging head and tail frames
of each utterance and augmented with the regular features for
DNN training. In NaT, authors claimed that the DNN can itself
learn the complex relation between clean and corrupted speech
due to the feature augmentation. However, our experimental
results on Aurora-4 [15] do not validate the claim. Instead,
we found that the system performs better if we augment the
features with VTS estimated noise parameters. To fully benefit
from both the powerful modeling capability of DNN and
effective noise compensation of VTS, an adaptive training
algorithm is proposed in [16]. Factorial Hidden Restricted
Boltzman Machine (FHRBM) [17] was proposed to explicitly
model the noise distribution and how the noise affects speech.
Ideal Hidden-Activation Mask (IHM) [18] is inspired from the
existing spectral masking techniques. Instead of masking the
noise in spectral domain, IHM discards the DNNs inconsistent
hidden activation units.

There is an increasing interest on combining the GMM and
DNN based models for feature processing as well as adap-
tation. For instance, in [19], the temporally varying weight
regression (TVWR) framework is proposed for unsupervised
speaker adaptation. In [20], posterior values from both the fea-
ture space adapted DNN and GMM are combined at the state
level during decoding. GMM-derived features have also been
used in [21] and [22] for speaker adaptation in DNN-based sys-
tem. So far, all the approaches proposed on combining GMM
and DNN for acoustic modeling are primarily for speaker adap-
tation. In this paper, we propose a novel adaptation approach
for noise robustness by incorporating a VTS adapted generative
GMM-based front-end layer to DNN. We use log-likelihood
scores of the GMMs as features for training the DNN. To make
use of the multi-condition data, we use Noise Adaptive Train-
ing (NAT) [11] for adapting the front-end layer. We also ex-
perimentally justify the benefit of having an adaptable genera-
tive front-end layer by comparing with DNN-based noise aware
training (NaT). From now on, we will refer our proposed ap-
proach as GFL-DNN as it is the combination of noise-adapted
GMM-based Front-end Layer and DNN.

The rest of the paper is organized as follows: In Section 2,
we introduce the concept of GFL-DNN. In Section 3, adaptation
of the GFL is detailed. Experimental results are given in Section
4 and the paper is concluded in Section 5.
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2. Generative Front-end Layer DNN
Our proposed GFL-DNN differs from the traditional CD-DNN-
HMM system by having an adaptable generative GMM-based
front-end layer.

2.1. Incorporating a generative front-end layer
One of the challenges with adapting DNN is due to the lack of
meaningful interpretation of its model parameters, rendering it
difficult to apply well-formulated algorithms such as the model-
based noise compensation techniques. Applying Gaussian Mix-
ture Models as a feature extractor provides an adaptable gener-
ative front-end layer (GFL) for the DNN. To derive the input
features for the feed forward DNN, we rely on log-likelihoods
of the GMMs. A typical GMM-HMM system consists of some
HMM states where the observation probability of each HMM
state is modeled by a GMM. Let us consider the pth state obser-
vation probability of an HMM is modeled with a GMM consist-
ing of Mp Gaussians. Then the joint log-likelihood of the state
p for a frame t of utterance u, represented as yu,t, can be given
as:
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u,t = log
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where l(p)u,t and D are the log-likelihood and feature dimension
respectively. In this way, for each vector yu,t, we will have a P
dimensional log-likelihood vector where P is the total number
of GMMs. If the log-likelihood vector corresponding to yu,t

is given as lu,t, then lu,t = [l
(1)
u,t l

(2)
u,t . . . l

(P )
u,t ]T . We

also perform a speaker mean normalization on log-likelihood
features before feeding to the DNN. Note that, co-variance of
the Gaussian is always considered diagonal.

2.2. GFL as a polynomial kernel

The log-likelihood vector extracted from the GFL can be treated
as a transformation on a polynomial kernel. If every HMM
state observation probability is modeled with only one Gaussian
(Mp = 1), the log-likelihood feature vectors can be obtained
by applying a linear transform on the squared expansion of the
regular features and augmented with an unit bias. If P be the
total number of states, log-likelihood corresponding to state p,
i.e. pth Gaussian, can be given as:
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and y2
u,t is the square of input feature yu,t. Exploiting Eq.

(1), the log-likelihood vector can be represented as:

lu,t = W [1 yu,t y2
u,t]

T , (6)

where W is a matrix constructed by Gaussian parameters and
can be given as:
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In GFL-DNN, we use (2D + 1) HMM states to construct
the front-end layer to preserve the full degree of freedom even
if each of the HMM state observation probability is modeled
with only one Gaussian where D is the feature dimension. As
the MFCC-∆-∆ features are 39 dimensional, we used 79 HMM
states for adapting the front-end. If each HMM state observa-
tion probability is modeled with multiple Gaussians, the log-
likelihood vector can be represented as a complex non-linear
transform on the polynomial expansion of the feature vector and
can be represented as:

lu,t = Φ([1 yu,t y2
u,t]

T ) , (8)

where Φ(.) is a non-linear transform determined by the Gaus-
sian parameters.

3. Adaptation of the GFL
3.1. Noise Adaptive Training with VTS compensation
In this section, we will discuss the steps of Noise Adaptive
Training (NAT) [11] as it is an essential component in the pro-
posed approach. Let us assume that a clean speech vector x is
corrupted by environment distortions, resulting vector y, can be
given as:

y = x+ h+ g(n− x− h) , (9)
where

g(n− x− h) = C log(1 + exp(C†(n− x− h))) , (10)

h and n are the channel distortion vector and additive noise
vector respectively. C and C† are discrete cosine transform
(DCT) and inverse discrete cosine transform (IDCT) matrices
respectively. Note that, Eq. (9) is valid for MFCC features.
After applying VTS, as given in [23], the mean update equations
of the qth Gaussian belongs to the pth state of an HMM can be
given as:

µ(pq)
y ≈ µ(pq)

x + µh + g(µn − µ(pq)
x − µh) (11)

µ
(pq)
∆y ≈ J (pq)µ

(pq)
∆x (12)

µ
(pq)
∆∆y ≈ J (pq)µ

(pq)
∆∆x (13)

In Eqs. (11)-(13), J (pq) is the Jacobian for the qth Gaussian of
the pth state w.r.t. x or h. The variance update equation can be
given as:

Σ(pq)
y ≈ f (J (pq),K(pq),Σ

(pq)
x ,Σn) , (14)

where
f(A,B, c,d) = diag(AcAT +BdBT ) (15)

and K(pq) is the Jacobian w.r.t. n and is equal to (I − J (pq)).
Σ

(pq)
∆y and Σ

(pq)
∆∆y can be updated similarly. Note that, additive

noise mean is considered static and channel distortion is con-
sidered invariant.

In standard VTS, a clean canonical model is required for
compensation. To make use of the multi-condition data, NAT
[11] is proposed where a pseudo clean model is derived itera-
tively from the multi-condition model. Key steps of NAT are
illustrated in Fig. 1. In NAT, a GMM-HMM system is trained
from the multi-condition data which is treated as an initialized
model. Then the noise parameters are initialized for every utter-
ance - channel mean is zero and mean and variance of the addi-
tive noise is the mean and variance of the head and tail frames
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Figure 1: Schematic diagram of Noise Adaptive Training.

respectively. After the initialization, additive and channel noise
parameters are re-estimated. Based on the re-estimated noise
parameters, the model is compensated according to Eqs. (11)-
(14) for every utterance. A pseudo clean model is derived based
on the statistics accumulated from all the utterances in the train-
ing set. As given in Fig. 1, noise parameter re-estimation and
pseudo clean model derivation is done in an iterative fashion
until likelihood converges. The derived pseudo clean model at
the end can be treated as a canonical model in test time during
standard VTS compensation. The detailed derivation steps can
be found in [11, 23].

3.2. Noise adaptation of the GFL
In the proposed GFL-DNN system, we use NAT [11] for adapt-
ing the GMM-based generative front end layer. Based on the
derived pseudo clean model after few iterations of NAT, noise
parameters are estimated by a two-pass decoding for the multi-
condition test data. Before extracting the log-likelihood fea-
tures, we compensate the pseudo clean model based on the es-
timated noise parameters. As we estimate the noise parame-
ters for each utterance and compensate the pseudo clean model,
transformations in Eq. (6)-(8) will be noise dependent and ut-
terance specific. Similar to Eq. (6)-(8), log-likelihood vectors
can be represented as:

lu,t = W (n) [1 yu,t y2
u,t]

T (16)

lu,t = Φ(n)([1 yu,t y2
u,t]

T ) , (17)

where W (n) is noise adapted linear transform and Φ(n)(.) is
noise adapted non-linear transform. Note that, both W (n) and
Φ(n)(.) are utterance specific.

4. Experiments
4.1. Experimental Setup
We used Aurora-4 corpus [15] to justify the effectiveness of the
proposed GFL-DNN system. In Aurora-4 corpus, two channel
recordings were made at 16 kHz. Channel 1 is same micro-
phone for all speakers. Channel 2 is chosen by sampling from a
set of 18 different microphones. There are 7 background noise
conditions for each channel recording type which are matched
for the train and test data. The training set is multi-conditional.
For experimentation, the test set is divided into four subsets: A
(Clean Speech and Channel 1), B (Noisy speech and Channel
1), C (Clean speech and Channel 2) and D (Noisy speech and
Channel 2). We report word error rate (WER) for each of the
set as well as for the entire set. In this paper, we used Kaldi [24]
and CNTK [25] for training and evaluating the models.

We use MFCC-∆-∆ feature to construct the baseline. The
features are 39 dimensional and consist of 13 static, 13 delta and
13 acceleration coefficients. We perform an 11 frame context

Table 1: Description of two different noise estimators.
Estimator Description

N1

We estimate the additive and channel
noise parameters by applying VTS on
top of a GMM-HMM system consists
of around 2500 HMM states and 15K
Gaussians in total. We compensate the

GFL based on this.

N2

Noise estimator and GFL are same.
We iteratively perform NAT to

estimate the noise parameters and
the pseudo clean model. The derived
pseudo clean model is then treated as

GFL to extract log-likelihood features.

Table 2: WER obtained using MFCC-∆-∆ feature (Baseline),
polynomial expansion of the same and log-likelihood features
extracted from the GFL (GFL-DNN) when it can be expressed
as a linearly transformed kernel.

System Adap-
tation

WER (%)
A B C D Avg.

Baseline – 3.3 7.8 7.5 19.3 12.4
Feature

Expansion – 3.3 7.9 7.9 19.6 12.6

GFL-DNN NO 3.3 8.4 7.5 20.0 12.9
GFL-DNN

(N1) YES 3.2 7.8 7.0 17.3 11.5

GFL-DNN
(N2) YES 3.6 8.1 8.2 18.6 12.3

expansion and a per dimension mean variance normalization be-
fore feeding the features to DNN. The baseline multi-condition
DNN configuration consists of 429 input units (39 × 11), 7
hidden layers each consists of 2048 units and an output layer
consists of 2031 units. We used ReLU for activation func-
tion. Dropout and momentum were also incorporated during the
training of DNN. As we can see in Table 2, the average baseline
performance we obtained is 12.4% WER. Note that, for rest of
all the experiments we do not change the size of context win-
dow and DNN configuration except the input layer size. The
log-likelihood features are 79 dimensional. For additive noise
parameter initialization we use first and last 20 frames for every
utterance.
4.2. Proposed GFL-DNN performance
In this section we analyze the performance of GFL-DNN sys-
tem. Note that, in Table 2 and 3, when we perform noise adap-
tation, we use two types of noise estimator namely N1 and N2.
Description of N1 and N2 is given in Table 1.

Table 2 shows the performance of baseline system, with ex-
panded features and when the GFL can be expressed as a linear
transformation on the expanded features as described in Section
2.2. It is shown that comparable performance to the baseline is
achieved when expanded features, i.e. ([1 yu,t y2

u,t]
T )

are used for training the DNN. However, performance degrades
when a Gaussian parameter based linear transformation is ap-
plied on the expanded features to get the log-likelihood features
for training the DNN. Significant performance improvement is
obtained when we perform noise adaptation on the GFL, i.e. ap-
ply a noise-adapted per-utterance linear transformation on the
expanded features. Better performance is obtained in case of
N1 compared to N2 as N1 is providing a more robust noise es-
timation due to having a large number of Gaussians.

Table 3 shows the results when log-likelihood features are
extracted from the GFL where each GMM consists of multi-
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Table 3: WER obtained using log-likelihood features extracted
from the GFL (GFL-DNN) when it can be expressed as a non-
linearly transformed kernel.

System Adap-
tation

WER (%)
A B C D Avg.

Baseline – 3.3 7.8 7.5 19.3 12.4
GFL-DNN NO 3.9 8.7 8.8 20.7 13.5
GFL-DNN

(N1) YES 3.3 7.7 7.0 16.0 10.9

GFL-DNN
(N2) YES 3.3 7.8 6.5 15.9 10.9

Table 4: Performance comparison between Noise aware Train-
ing (NaT) and adapted GFL-DNN system. ”NO” in ”VTS” field
signifies that only additive noise parameters are estimated by
averaging the head and tail frames of every utterance.

System VTS WER (%)
A B C D Avg.

Baseline – 3.3 7.8 7.5 19.3 12.4

NaT NO 3.3 7.8 7.6 19.1 12.3
YES 3.4 7.4 7.2 17.9 11.6

Adapted
GFL-DNN

NO 3.9 8.5 8.4 19.1 12.7
YES 3.3 7.7 7.0 16.0 10.9

ple Gaussians and can be expressed as given in Eq. (8) and
(17). In Table 3, the GFL used for log-likelihood feature ex-
traction consists of 79 GMMs and around 4K Gaussians in to-
tal. Similar to linear transformation based GFL, we obtain a
performance degradation when only Gaussian parameter based
non-linear transformation is applied on the expanded features.
Performance improves significantly when noise adaptation is
performed on the GFL, i.e., extracting log-likelihood based on
Eq. (17). In Table 3, same average error rate is obtained using
N1 and N2 noise estimator. Hence it can be concluded that, if
we apply NAT on a GFL with larger number of Gaussians, it
can provide similar noise estimation to the VTS-based bigger
GMM-HMM system used in N1 noise estimator. We obtained
similar performance by varying the number of NAT iterations.
This might be due to the fact that the variations arise due to dif-
ferent number of noise estimation iterations, can be learned by
the DNN.

Table 2 and 3 show that performance degrades if linear or
non-linear transformation is applied on the expanded features
without applying adaptation. This might be due to the fact that
the DNN is not being able to reconstruct the transformation
during training. When we are updating the GFL parameters
for a particular utterance by maximizing the likelihood, log-
likelihood vector corresponding to every frame provides more
informative feature representation which becomes helpful for
the DNN and in turn resulting better recognition accuracy. If we
compare the performance of GFL-DNN of Table 2 and 3 with-
out adaptation, we can see that degradation is higher in case of
non-linear transformation as it is harder for the DNN to recon-
struct the non-linear transformation during training. However,
when noise adaptation is performed, non-linear transformation
based log-likelihood features provide significantly better recog-
nition accuracy. This is because of using a larger number of
Gaussians facilitate generating more robust per-utterance based
transformations.
4.3. Performance Comparison with Noise Aware Training
One simple yet powerful approach for adapting DNN is noise
aware training (NaT). The NaT proposed in [14] only consid-
ers the mean of additive noise parameter. Per utterance ad-

Table 5: WER obtained with per-utterance Cepstral Mean
Normalization (UttCMN) with MFCC-∆-∆ feature and log-
likelihood features obtained from the GFL for training DNN.
When we adapt GFL, N2 noise estimator is used.

Features Adap-
tation

WER(%)
A B C D Avg.

MFCC-∆-∆+
UttCMN – 2.9 7.1 7.5 17.1 11.1

GFL-Loglike+
UttCMN

NO 3.5 7.5 7.5 17.9 11.7
YES 3.5 7.7 6.5 16.1 10.9

ditive noise mean vector is initialized as an average of head
and tail frames. The authors claimed that, due to augmentation
of the additive noise mean vector with regular features during
the DNN training, DNN will itself learn the relation given in
Eq. (9). Table 4 shows that better recognition accuracy can be
acheived if we do NaT with VTS compensated noise parame-
ters. It is evident that DNN is not able to learn everything that
VTS does. When the GFL is compensated with only initialized
additive noise mean, GFL-DNN does not perform well. How-
ever, GFL-DNN performs significantly better than NaT even
VTS adapted NaT when VTS adapted noise parameters are used
for compensation. Hence, it can be concluded that using an
adaptable generative front-end layer provides better recognition
accuracy than aware training where the estimated noise param-
eters are given directly to DNN, hoping that the DNN will learn
the meaningful relationship. Besides, having a generative front-
end layer gives more control and interpretation that leads to bet-
ter adaptability of the entire system.

4.4. Effect of utterance mean normalization
In the previous experiments, we used per-speaker mean subtrac-
tion on all types of features before feeding to the DNN. Table
5 shows the results when per-utterance mean subtraction is ap-
plied on the features before feeding to the DNN. Configuration
of GFL is same as in Table 3. For MFCC-∆-∆ and un-adapted
GFL log-likelihood features, the average performance improves
compared to the results given in Table 3. However, average per-
formance of adapted GFL log-likelihood features remains same.
As VTS adaptation is already an utterance based adaptation, ut-
terance based CMN could not improve further. Although the
average performance of adapted GFL is similar to MFCC-∆-
∆, improvement is significant in case of set C and D (Channel
mismatch).

5. Conclusions
Having an adaptable generative front-end layer facilitates ap-
plying model based adaptation approaches such as VTS and
thereby increase the system adaptability. In this paper, we pro-
posed a noise adaptation strategy where a generative GMM-
based system is used as a front-end layer to DNN. In Aurora-
4 task, we obtained around 12.1% relative improvement com-
pared to the baseline. Performance of the proposed system is
also compared with noise aware training (NaT). We show that
VTS estimated noise parameters yield better performance for
noise aware training compared to simply relying on the aver-
age of silence frames for feature augmentation. We obtained
around 5.7% relative improvement for VTS based NaT com-
pared to the regular NaT. Our proposed system yields 6% and
11.4% relative improvements compared to the VTS-based NaT
and regular NaT respectively. So far we have not managed to
get similar performance of the unadapted GFL compared to the
baseline. Having such a GFL will improve the performance
when adaptation will be applied even in case of utterance based
normalization. This will be a part of our future work.

2362



6. References
[1] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview

of noise-robust automatic speech recognition,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 22, no. 4, pp.
745–777, 2014.

[2] D. Macho, L. Mauuary, B. No, Y. M. Cheng, D. Ealey, D. Jouvet,
H. Kelleher, D. Pearce, and F. Saadoun, “Evaluation of a noise-
robust dsr front-end on aurora databases.” in Proc. Interspeech,
2002.

[3] D. Yu, L. Deng, J. Droppo, J. Wu, Y. Gong, and A. Acero,
“A minimum-mean-square-error noise reduction algorithm on
mel-frequency cepstra for robust speech recognition,” in Proc.
ICASSP, 2008, pp. 4041–4044.

[4] C. J. Leggetter and P. C. Woodland, “Maximum likelihood lin-
ear regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech & Language, vol. 9, no. 2, pp.
171–185, 1995.

[5] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation
for multivariate gaussian mixture observations of markov chains.”
IEEE Transactions on Speech and Audio Processing, vol. 2, no. 2,
pp. 291–298, 1994.

[6] P. J. Moreno, B. Raj, and R. M. Stern, “A vector taylor series ap-
proach for environment-independent speech recognition,” in Proc.
ICASSP, 1996, pp. 733–736.

[7] D. Y. Kim, C. K. Un, and N. S. Kim, “Speech recognition in noisy
environments using first-order vector taylor series.” Speech Com-
munication, vol. 24, no. 1, pp. 39–49, 1998.

[8] A. Acero, L. Deng, T. T. Kristjansson, and J. Zhang, “Hmm adap-
tation using vector taylor series for noisy speech recognition.” in
Proc. Interspeech, 2000, pp. 869–872.

[9] J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, “High-performance
hmm adaptation with joint compensation of additive and convolu-
tive distortions via vector taylor series.” in Proc. ASRU, 2007, pp.
65–70.

[10] J. Du and Q. Huo, “An improved VTS feature compensation using
mixture models of distortion and IVN training for noisy speech
recognition,” IEEE/ACM Transactions on Audio, Speech & Lan-
guage Processing, vol. 22, no. 11, pp. 1601–1611, 2014.

[11] O. Kalinli, M. L. Seltzer, J. Droppo, and A. Acero, “Noise
adaptive training for robust automatic speech recognition,” IEEE
Transactions on Audio, Speech & Language Processing, vol. 18,
no. 8, pp. 1889–1901, 2010.

[12] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 20, no. 1, pp. 14 –22, 2012.

[13] T. Yoshioka and M. J. F. Gales, “Environmentally robust ASR
front-end for deep neural network acoustic models,” Computer
Speech & Language, vol. 31, no. 1, pp. 65–86, 2015.

[14] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep
neural networks for noise robust speech recognition,” in Proc.
ICASSP, 2013.

[15] N. Parihar, J. Picone, D. Pearce, and H. Hirsch, “Performance
analysis of the aurora large vocabulary baseline system,” in Euro-
pean Signal Processing Conference, 2004, pp. 553–556.

[16] B. Li and K. C. Sim, “Noise adaptive front-end normalization
based on vector taylor series for deep neural networks in robust
speech recognition,” in Proc. ICASSP, 2013, pp. 7408–7412.

[17] S. J. Rennie, P. Fousek, and P. L. Dognin, “Factorial hidden re-
stricted boltzmann machines for noise robust speech recognition.”
in Proc. ICASSP, 2012, pp. 4297–4300.

[18] B. Li and K. C. Sim, “An ideal hidden-activation mask for deep
neural networks based noise-robust speech recognition,” in Proc.
ICASSP, 2014, pp. 200–204.

[19] S. Liu and K. C. Sim, “On combining DNN and GMM with un-
supervised speaker adaptation for robust automatic speech recog-
nition,” in Proc. ICASSP, 2014, pp. 195–199.

[20] X. Lei, H. Lin, and G. Heigold, “Deep neural networks with aux-
iliary gaussian mixture models for real-time speech recognition,”
in Proc. ICASSP, 2013, pp. 7634–7638.

[21] N. A. Tomashenko and Y. Y. Khokhlov, “Speaker adaptation of
context dependent deep neural networks based on map-adaptation
and gmm-derived feature processing,” in Proc. Interspeech, 2014,
pp. 2997–3001.

[22] ——, “Gmm-derived features for effective unsupervised adap-
tation of deep neural network acoustic models,” in Proc. Inter-
speech, 2015, pp. 2882–2886.

[23] J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, “A unified frame-
work of HMM adaptation with joint compensation of additive and
convolutive distortions,” Computer Speech & Language, vol. 23,
no. 3, pp. 389–405, 2009.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in Proc. ASRU, Dec. 2011.

[25] D. Yu, A. Eversole, M. L. Seltzer, K. Yao, B. Guenter,
O. Kuchaiev, Y. Zhang, F. Seide, G. Chen, H. Wang, J. Droppo,
A. Agarwal, C. Basoglu, M. Padmilac, A. Kamenev, V. Ivanov,
S. Cypher, H. Parthasarathi, B. Mitra, Z. Huang, G. Zweig,
C. Rossbach, J. Currey, J. Gao, A. May, B. Peng, A. Stolcke,
M. Slaney, and X. Huang, “An introduction to computational net-
works and the computational network toolkit,” Tech. Rep., August
2014.

2363


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Khe Chai Sim
	Also by Mark J.F. Gales
	----------

