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Abstract

Online-Recognition requires the acoustic model to provide pos-
terior probabilities after a limited time delay given the online
input audio data. This necessitates unidirectional modeling and
the standard solution is to use unidirectional long short-term
memory (LSTM) recurrent neural networks (RNN) or feed-
forward neural networks (FFNN).

It is known that bidirectional LSTMs are more powerful and
perform better than unidirectional LSTMs. To demonstrate the
performance difference, we start by comparing several different
bidirectional and unidirectional LSTM topologies.

Furthermore, we apply a modification to bidirectional
RNNs to enable online-recognition by moving a window over
the input stream and perform one forwarding through the RNN
on each window. Then, we combine the posteriors of each for-
warding and we renormalize them. We show in experiments
that the performance of this online-enabled bidirectional LSTM
performs as good as the offline bidirectional LSTM and much
better than the unidirectional LSTM.

1. Introduction

Recently, deep bidirectional LSTM based acoustic models have
been shown to yield state-of-the-art results in speech recogni-
tion [1, 2, 3]. It is known that bidirectional LSTMs are more
powerful than unidirectional LSTMs [4] and also much more
powerful than FENNs [1]. Unidirectional LSTMs and some-
times even FFNNs are however often used in production sys-
tems because only these seem to allow online recognition in a
straight-forward way.

We do some comparison between unidirectional and bidi-
rectional LSTMs and show their great gap in performance. To
investigate this further, we do several experiments on other sim-
ilar topology variants. This leads to the conclusion that it is
favourable to use bidirectional LSTMs.

Our main motivation for this work was to develop a method
which enables to do online recognition also with a bidirectional
LSTM:s acoustic model. We present our method and we show
that this method is as good as offline bidirectional LSTMs. We
need to add a small delay of less than 1 second to achieve the
best performance. The method needs some additional effort in
computation for decoding which however can be easily paral-
lelized. The method can be seen as an extended acoustic model
which embeds a conventional acoustic model. The embedded
acoustic model will then estimate posteriors only on the win-
dows. The embedded acoustic model can be trained in a con-
ventional way or it can be trained as part of the extended model,
which would be more computationally expensive. In our exper-
iments, we use a conventionally trained model.

In this work, we concentrate on the online-ability of the
acoustic model only. To do online decoding, one would also
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need the feature extraction pipeline to work online. In our ex-
periments, we use an offline feature extraction pipeline and the
features are normalized segment-wise. We did not change our
feature extraction to focus the comparisons on the differences
introduces by the corresponding LSTM topologies.

2. Related work

[4] is an early work where unidirectional and bidirectional
RNNs and LSTMs are compared and it is shown that bidirec-
tional models outperform unidirectional ones.

In [5], a similar idea of a sliding window over the input
features is introduced. The authors focus on the comparison to
windowed input in a FFNN which approximates the posteriors
of the center frame of the window. Thus, in their comparison,
the bidirectional LSTM also only approximates the posteriors of
the center frame of the given window. This is different from our
work where the bidirectional LSTM approximates the posteri-
ors for all frames of the window. The approach in [5] requires
that the window is moved on a frame by frame basis, to get pos-
teriors for all frames of the whole input, and it also needs some
initial padding for the initial windows of the input. The authors
focus on the question whether the LSTM/RNN gains perfor-
mance when using longer context like the whole input sequence
or if a window is enough. Their conclusion is that at least for
their experiments, the LSTM performed just as good when it is
used on a window as long as the window is large enough. Note
that they did not use a conventionally trained acoustic model for
their method but they always trained new models to keep train-
ing and recognition more consistent. Note that training such a
model is much more computationally expensive than training a
conventional model. Our work shows that we can train a model
in a conventional way and still use it for online decoding.

Recently, end-to-end sequence-to-sequence models for
speech recognition were proposed [6, 7]. In [8], a method is
developed to enable online decoding with such a model by op-
erating on blocks of data. In this work, the encoder is an uni-
directional RNN and the blocks are non-overlapping windows.
The transducer is also a unidirectional RNN and operates on
each block. Also, the recurrent state is fed from one block into
the next in both the encoder and the transducer. We don’t do this
in our work and there is also no straight-forward way to do this
in our approach, but it might be an interesting extension. To
enable online decoding in encoder-transducer approaches, the
encoder needs to operate online, i.e. a unidirectional RNN or
the approach presented in our work can be applied. The atten-
tion model also cannot operate globally in online recognition
and if the history of past encoder output is restricted, then the
attention must be local and monotonic. The approach in [9]
penalizes non-monotonic soft alignments but does not enforce
them in the model. A local attention mechanism is proposed
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Figure 1: Bidirectional vs. unidirectional topologies.

in [10] but the corresponding monotonic local attention variant
is just a linear alignment and the other local attention variant
presented is not monotonic. A local monotonic attention like in
[11] would allow online recognition.

In [12, 13] it is argued that a time delay neural network
can be used instead of an RNN to model long term temporal
dependencies. Due to its feed-forward nature, this can also be
applied for online decoding.

3. Unidirectional vs. Bidirectional LSTMs

Unidirectional LSTMs seem to be a natural choice to enable
online decoding. In this work, we want to confirm earlier results
that bidirectional LSTMs outperform unidirectional ones. Thus
we compare unidirectional LSTMs with bidirectional LSTMs
and a few other related topologies.

When having deep bidirectional models, one can combine
the forward and backward directions after each layer or only at
the output layer. We compare both topologies (see Figure 1) and
we see some noticeable degradation when the combination is
only in the output layer (see Table 1). One third comparison was
to add the forward and backward LSTM outputs and divide by 2,
1.e. average them. This can be seen as a variant of combination
after every layer with some dimension reduction. This reduces
the number of parameters even more than the model where we
combine only in the output layer and is also slightly better. This
leads to the conclusion that the combination after every layer
overall is better than combining only in the output layer.

Our initial unidirectional baseline experiment has very sim-
ilar parameters than the bidirectional model except that we have
only one forward LSTM with 500 cells in every layer. As ex-
pected, this performs much worse than the bidirectional model.
We also did one experiment with a backward unidirectional
LSTM which was surprisingly a bit better than the forward uni-
directional LSTM. In [4], a similar result for a backward LSTM
was obtained. It can be argued that the comparison is not fair
because this model has less parameters. To consider this, we
did an experiment using two separate LSTMs per layer, which
are combined after each layer in the same fashion as the bidirec-
tional baseline model which results exactly in the same number
of parameters as the bidirectional baseline model. The result
shows that it gives only some improvement though still being
much worse than the bidirectional model.

In the unidirectional case, we can argue that one big disad-
vantage is that we have no context information of future frames.
Nevertheless, as shown in [4], introducing a certain amount of
local future context/delay does improve performance to some
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extend. Currently, we perform ongoing experiments to confirm
these results.

Table 1: Comparison between different bidirectional and unidi-
rectional topologies. 3 layers, hidden layer size 500, Adadelta
with WER reported on evall0. More details in Section 3. Setup
described in Section 5.

[ dir. | topology [#params[M][WER|[ %] |
bidir | combine after every layer 18.7 15.1
combine at output layer 14.7 16.0
average after every layer 12.5 15.8
unidir forward 7.4 19.6
backward 7.4 19.3
two separate LSTMs per layer 18.7 19.1

4. Enabling Online Recognition with
Bidirectional LSTMs

In the previous section, we outlined the potential advantage
bidirectional LSTMs have over unidirectional ones by fully ex-
ploiting the complete input for each frame. The motivation is
thus to use bidirectional LSTMs also for online decoding. This
is not possible with the conventional bidirectional approach us-
ing the complete input of a segment. The basic idea in this work
was to operate always only on a fixed window, thus the future
context is limited and we can use it for online decoding.

We use an existing bidirectional model to operate on a given
window to estimate posteriors for each frame of the window.
Then we move the window a few frames forward and repeat.
We can get overlapping windows with this approach and we
had the intuition that multiple posterior estimations for a given
time frame from overlapping windows will only help. We will
see in our experiments in Section 6 that this is the case.

‘We can use any existing already trained bidirectional LSTM
model. Let z5° € RY*P be the possibly infinite input feature
stream and D is the input observation vector dimension.

Given the input sequence x7°, we move a window over it

we have up to [Ty, /Ts] windows at some time frame which
can overlap. For each window X;, we do one evaluation with
the bidirectional LSTM and we get some estimated posterior
probabilities p;(s]|X;) for every state s for each time frame ¢ in
the window given the window X;. We then combine all these
outputs by averaging over all overlapping windows for a given
time frame, optionally with some weighting.

The recurrent initial states for each window are always ini-
tialized with zero in our experiments. As the windows are usu-
ally overlapping and also not necessarily aligning with past win-
dows, there is no straight-forward way to initialize at least the
forward LSTMs with states from past windows. If T, = 0
(mod T%), we could use the last aligning window but we did
not do this experiment.

Let W-(t) € Rxq be the weighting for time frame ¢ €
{r+1,...,7+ Tw} in the window x:if“’ We estimate the
acoustic model posterior probability g:(s|zI°) to be in state s
in time frame ¢ given the input sequence as

_ 2o War (8) - pe(s] X3)
D it Wi, (t)

where p:(s]|X;) is the state posterior probability estimated by
the bidirectional LSTM which operates on the window X;.

)

g (s|21%)



This means, to evaluate the posterior probability g:(s|z$°)
at some time frame, we have to look up to 7%, — 1 frames into
the future. In an online recognizer, this would be some added
delay. Note that all p;(s|X;) can be calculated in parallel for
every window Xj;.

We have the intuition that the bidirectional LSTM can bet-
ter estimate the posteriors for frames in the center. Thus, we
applied different weightings across the frames in one window:

e Uniform: W, (¢) = 1.
o Triangle: W-(¢t) =1+ min{t — 7 — 1,7+ T\, — t}.
) with

2w (t—7—1)

* Hamming: W-(t) = a—(1—a) cos ( v

a = 0.53836.
» Gauss: W, (t) = exp (—% (
with o < 0.5.

(t7771)7<Tw71)/2)2>
o(Tw—1)/2

Note that the approach in [5] can be seen in this formulation
as a weighting where only the center frame is 1 and we have 0
everywhere else.

5. Experimental Setup

We use a subset of 50 hours from the Quaero English database
trainll [14] to train our bidirectional LSTM based acoustic
model. The development evall0 and evaluation evall I sets con-
sist of about 3.5 hours of speech each. The recognition is per-
formed using a 4-gram language model.

The input features are globally mean- and variance normal-
ized 50-dimensional VTLN-normalized Gammatone features
[15]. We don’t add any context window nor delta frames.

One minibatch for the LSTM network training consists of
several chunks, i.e. several parts of a sequence. From the cor-
pus sequences, every tsep frames, we select a chunk of up
to 7' frames, until we have n¢hunks number of chunks. This
minibatch construction is similar to e.g. [16] and described
in more detail in [3]. Our baseline model was trained with
T = 50,tstep = 25, Nchunks = 40, i.e. with a minibatch size
of 2000 frames. Note that this scheme is similar to the online
recognition scheme but this is no requirement in the training.
In [3], we did several experiments with different minibatch and
chunk sizes and we usually don’t see much improvement for
longer chunks, which is analogous to the results presented in
this work for the recognition part.

More details about the setup and a comprehensive study
of different variants of LSTM topologies, hyperparameters and
different optimization methods can be seen in [3].

Our baseline acoustic model is a 3 layer bidirectional
LSTM with 500 cells each for the forward and the backward di-
rection in every layer which is combined after every layer. We
use dropout and L regularization and Adam [17] for optimiza-
tion in addition to learning rate scheduling as described in [3].
Our model has 1.87M parameters and one training epoch takes
1:22h on a GeForce GTX 980 with RETURNN, our Theano-
based training framework as described in [18, 19]. On evall0,
we get a WER of 13.7% with conventional offline recognition.
Note that this has been improved over the model reported in
section 3.

6. Experimental Results

All recognition experiments were done with the same acoustic
model, which we described in the previous section and we al-
ways report the WER on evall0. Note that the features still are
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normalized segment-wise, so the feature set is not yet online-
enabled. However, this allows a consistent comparison with the
offline modeling performance.

We are first interested in the effect of the window size T3,
i.e. how much context do we need. We compare different win-
dow sizes 7%, in Table 2. Note that 100 frames correspond to
1 second of audio. As expected, bigger windows yield better
performance. We see that with this setting, we can reach the
original performance. Note that we have quite a few overlap-
ping windows in this setting.

Table 2: Comparing window sizes Ty, T's = 10, uniform distri-
bution. We also note the number of overlapping windows.

[ Tw | #windows [ WER[%] |
20 2 16.3
40 4 14.1
60 6 13.9
80 8 13.9
100 10 137

Then, for a given window size, we compare different win-
dow steps T’ in Table 3. It is interesting to see the big impact
on the performance. We interpret that there is some variability
in each forwarded window and we gain some information by
combining them. To further analyze this effect, we compare the
number of overlapping windows in Table 4. We conclude that
there is the clear trend that more windows are better, provided
the windows itself are not too short. Thus, T = 1 is likely the
best choice, although this comes at a performance cost which is
parallelizable but we keep using wider window steps for sim-
plicity.

Table 3: Comparing window steps T, T, = 40, uniform dis-
tribution. We also note the number of overlapping windows.
| T [ #windows [ WER[%] ]

1 40 13.7
5 8 13.9
10 4 14.1
20 2 154

Table 4: Comparing number of overlapping windows [T /Ts],
uniform distribution.

| #windows [ Tw [ Ts [ WER[%] ‘

2 20 10 16.3

40 | 20 154
4 40 10 14.1
8 40 5 13.9
10 10 1 18.5

40 4 13.7

100 | 10 13.7
20 100 | 5 13.6
40 40 1 13.7

So far, we have only used a uniform weight distribution for
the averaging over windows. It is conceivable that the frames in
the center of a window might provide better posterior estimates.
Thus we compare different frame posterior weight distributions
in Table 5 and we get to the conclusion that the performances
are very similar and the triangle distribution seems to perform
slightly better than the others, also better than Hamming and



Gauss, even though differences are not significant.

Table 5: Comparing distributions.

[ Tw [ Ts [ distribution [ WER[%] |
40 5 uniform 13.9
triangle 13.8
hamming 13.8
gauss o = 0.4 13.8
4 uniform 13.7
triangle 13.7
100 | 5 uniform 13.6
triangle 13.6
hamming 13.7
gauss 0 = 0.4 13.7

‘We have seen that we can reach the original (offline) perfor-
mance, the more windows the better, and the triangle distribu-
tion might be slightly better. With these settings, the optimiza-
tion over window sizes was repeated, cf. Table 6. Interestingly,
we get even slightly better than our baseline and it seems as if
50 frames (half a second) are enough to get the best result.

Table 6: Comparing window size T',. T's = 5, triangle distri-
bution.

[ T | WER[%] |
40 | 138
50 | 136
80 | 136
100 | 13.6

Another idea was that for each forwarding, we could en-
large the window to add more left-context, i.e. C; additional
frames, because we have that audio input anyway and the bidi-
rectional LSTM might get better context information from it.
We would only use the LSTM posterior estimations which are
not part of the added left context. Our input window actually is
of size T’, + C) then. We compare different settings in Table 7.
For very short windows, as expected, it helps but not as much as
having a bigger window in the first place. For bigger windows,
an additional left context doesn’t help and unexpectedly even
seem to slightly degrade the performance.

Table 7: Comparing added left context.
| Tw [ Ts [ distribution [ left context C [ WER|[ %] ‘

10| 1 triangle 0 18.3

100 15.1

40 | 10| uniform 0 14.1

100 14.1

triangle 0 14.1

100 14.2

5 triangle 0 13.8

100 13.9
Note that an equivalent formulation would be T}, = T, +
Cpand W/(t) = 0fort < 7+ C; and W.(t) = Wrig, (t)

otherwise, although the number of overlapping windows con-
sidering the posterior estimations is less as well as the needed
delay in online recognition.

Analogously we can add more right context. When we
keep the window size T, fixed and we have both left and right
context with W/ (t) = 0, we effectively reduce the amount
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of overlapping posterior estimations. The extreme case where
WZ(t) # 0 only for the center frame is exactly the setting as
in [5] and results in no overlaps at all. We did one experiment
with a window size T}, = 49 where we only take out the center
frame posterior estimation and we get a WER of 14.0%, com-
pared to T, = 50,7 = 5 and the triangle distribution on the
full window where we get a WER of 13.6%. We conclude that
the overlapping posterior estimations contribute to richer infor-
mation density.

As outlined in Section 1, we can train also directly the ex-
tended acoustic model to have the training consistent with the
recognition. In [5], they only use models trained in this scheme
and did not try any conventionally trained models. Our Theano-
based framework RETURNN [18, 19] allows for straightfor-
ward training of the extended models, although it is very slow
in our current implementation and we didn’t get any interesting
results so far.

6.1. Experiments on Switchboard

We use the 300h Switchboard-1 Release 2 (LDC97S62) corpus
for training and the Hub5’00 evaluation data (LDC2002S09)
is used for testing. We report the WER for the Switchboard
(SWB) and CallHome (CH) parts separately. We use a 4-gram
language model which was trained on the transcripts of the
acoustic training data (3M running words) and the transcripts
of the Fisher English corpora (LDC2004T19 & LDC2005T19)
with 22M running words. More details can be found in [20].

A good FFNN baseline yielded a total WER of 19.1%
(13.1% WER on SWB and 25.6% WER on CH). We trained a
5 layer bidirectional LSTM and obtained a total WER of 17.1%
(11.9% WER on SWB and 22.3% WER on CH). This is the
model which we used for the online recognition experiments.

We did one recognition with T, = 100,7s = 5 with the
triangle distribution and got 17.4% WER in total (11.8% WER
on SWB and 23.1% WER on CH). The same setup with T = 4
yielded a total WER of 17.3% WER (11.6% WER on SWB and
23.0% WER on CH). We see the same effect as earlier that more
overlapping windows improve the performance. Interestingly,
we get even better on the SWB part than our baseline but we
are a bit worse on the CH part.

7. Conclusions & Outlook

We presented a method which enables online recognition with
bidirectional LSTM acoustic models. We demonstrated that
this method yields comparable recognition performance. The
model can be trained in a conventional setting, although online-
enabled feature normalization is required to get a true online
recognition setup.

This method can easily be combined with the attention
based approach in [8] and also the CTC approach in [21] which
are interesting directions for further research.
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