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Abstract
In this paper, we present a multi-talker speech recognition sys-
tem based on blind source separation with an ad hoc micro-
phone array, which consists of smartphones and cloud stor-
age. In this system, a mixture of voices from multiple speakers
is recorded by each speaker’s smartphone, which is automati-
cally transferred to online cloud storage. Our prototype system
is realized using iPhone and Dropbox. Although the signals
recorded by different iPhones are not synchronized, the blind
synchronization technique compensates both the differences in
the time offset and the sampling frequency mismatch. Then,
auxiliary-function-based independent vector analysis separates
the synchronized mixture into each speaker’s voice. Finally, au-
tomatic speech recognition is applied to transcribe the speech.
By experimental evaluation of the multi-talker speech recogni-
tion system using Julius, we confirm that it effectively reduces
the speech overlap and improves the speech recognition perfor-
mance.
Index Terms: Ad hoc microphone array, blind source separa-
tion, synchronization, speech recognition

1. Introduction
Multi-party conversation such as at a meeting or a daily chat-
ting is an important target in the automatic speech recognition
(ASR) field [1]–[3] because it is a fundamental activty of hu-
man communnication. In ASR in a multi-talker environment,
the overlap of speech sounds causes problems [4]. The detec-
tion of speech overlaps was studied to avoid degrading the per-
formance of ASR [5]. In the Pascal Speech Separation Chal-
lenge [6], recognizing a target speech in the presence of another
talker’s speech was evaluated in a monaural scenario. A mul-
tichannel approach has also been studied [7]–[11] because it is
more effective for speech separation.

Meanwhile, smartphones are becoming widely prevalent
and many people have their own smartphone. Thus, using
smartphones as elements of a microphone array may be con-
sidered as a promising approach to speech separation. This ap-
proach has been studied in the framework of an ad hoc micro-
phone array [12]–[14], which has been applied to beamforming
[15]–[17] and blind source separation (BSS) [18]–[20]. It is
also attractive for multi-talker speech recognition because it is
easy to record conversations without preparing a specific ded-
icated recording device. The flexibility of the device arrange-
ment makes it easier to set each device close to each talker,
which could contribute to improving the input signal-to-noise
ratio (SNR).

In an ad hoc microphone array, the signals recorded by dif-

ferent devices are not synchronized because of the different start
times of recording and the sampling frequency mismatch be-
tween individual devices. In this case, conventional microphone
array processing does not work without modification. To over-
come this problem, we have developed a blind synchronization
technique [21]–[23], which compensates both the difference in
the time offset and the sampling frequency mismatch. In our
previous work, we showed by simulative experiments that this
technique is effective for improving the source separation per-
formance. However it is still challenging to apply this technique
to the ASR scenario.

In this paper, we present a multi-talker speech recognition
system using smartphones and cloud storage. In this system,
a conversation by multiple speakers is recorded by their own
iPhones. After recording, an iPhone app that we developed
auomatically transfers each recorded signal to fixed Dropbox
storage. The collected signals are synchronized by blind syn-
chronization [21]–[23], then auxiliary-function-based indepen-
dent vector analysis (AuxIVA) [24] is applied for BSS. Finally,
each separated signal is transcribed by ASR. By performing ex-
periments using three iPhones with a mixture of three speak-
ers’ voices, we confirm that this system effectively reduces
the speech overlap and improves the speech recognition per-
formance.

2. Ad hoc microphone array using
smartphone and cloud storage

2.1. System Overview

Fig. 1 illustrates an overview of the proposed system. Suppose
a situation that multiple speakers have a meeting and they each
record their conversation by their smartphones. It is assumed
that each device is placed closer to each speaker. The recorded
data are individually transferred to online cloud storage by 3G
or a Wi-Fi wireless channel. Then, they are synchronized and
separated into each speaker’s voice in a blind manner, and fi-
nally ASR is applied for transcription. All of the signal pro-
cessing is performed on a PC in a centralized way.

2.2. Prototype Realization Using iPhones and Dropbox

As a realization of the ad hoc microphone array mentioned in
the previous subsection, we demonstrate a prototype system us-
ing iPhones and Dropbox.

To capture sound, we have developed an iPhone app as
shown in Fig. 2. Sound is recorded as an uncompressed PCM-
format WAV file with 16 bit precision. To distinguish the files
recorded by different devices, the WAV file name has an iden-

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-7583369



3G/Wi-Fi

Cloud storage

Blind 

Synchronization

Blind Source 

Separation

Speech

Recognition

PC

Multi-channel 

observation

(not synchronized)

Synchronized

signals

Separated

signals

Multi-speaker

transcription

Figure 1: System overview.

Figure 2: Screenshot of the setup screen (left) and the recording
screen during uploading of data to Dropbox (right)

tical device-dependent prefix. Automatic gain control is turned
off during recording. One important issue in ad hoc microphone
arrays is how to collect or share the data recorded by each de-
vice. For example, it would be cumbersome if we have to con-
nect each iPhone with a PC one by one for data transfer. To
simplify data transfer, our iPhone app automatically uploads the
recorded sound file to fixed Dropbox storage after the recording.
This iPhone app records not only sound but also other sensor
data such as accelerations, angular accelerations, orientation,
and GPS information, which are not used in this work.

3. Signal processing for asynchronous
recording of mixture

3.1. Blind Synchronization

For simplicity, we here consider speech captured by two
iPhones. Let xi (t) for i = 1, 2 denote the acoustic signals
in the continuous time domain at the microphones of the two
iPhones. They are independently discretized by the A/D con-
verter (ADC) of each iPhone. Then, because of the different
time offsets and the sampling frequency mismatch, the dis-
cretized signals are not synchronized. Let xi [n] for i = 1, 2
be the discretized signals, which are given by

x1 [n] = x1

(
n

fs

)
, (1)

x2 [n] = x2

(
n

(1 + ϵ) fs
+ T21

)
, (2)

where fs is the nominal sampling frequency, ϵ is a dimension-
less scalar representing the sampling frequency mismatch, the
origin of the continuous time t = 0 is defined as the time when
the sampling of x1 [n] starts, and T21 is the continuous time
when the sampling of x2 [n] starts.

For conventional array signal processing, synchronization
between channels is necessary. Not only the time offset T21,
but also the sampling frequency mismatch ϵ greatly degrades
the performance of array signal processing [23][25]–[27] even
though it can be as small as 10−5 depending on the length of the
signal. Thus, we have to estimate the synchronized version of
the second channel relative to the first channel, which is given
as

x̂2 [n] = x2

(
n

fs

)
= x2 [(1 + ϵ) (n−D21)] , (3)

where D21 = fsT21.
To obtain this, a blind synchronization technique [21]–[23]

that we have previously developed is applied. In this method,
the time offset is first compensated using the cross-correlation
of the two observed signals. Then, based on the approxima-
tion that the drift of the time difference within a time frame is
constant, the sampling frequency mismatch is compensated by
a linear phase shift which is given by

X̂2 (k,m; ϵ) = X2 (k,m) exp

(
2πȷkϵm

L

)
(4)

where X2 (k,m) and X̂2 (k,m; ϵ) are the STFT representa-
tions of x2[n] before and after the compensation, respectively,
k is the discrete frequency index and m denotes the center po-
sition of a window with length L in the discrete time (not the
discrete frame index). The sampling frequency mismatch ϵ is
estimated by maximizing the likelihood of the stationary spa-
tial model in the STFT domain based on the assumption that
the sources are motionless and have stationary amplitudes. The
estimation of the time offset, the estimation of the sampling fre-
quency mismatch, and reframing using them can be iteratively
performed to improve the accuracy. The procedure is described
in detail in [23].

3.2. Blind Source Separation

In the supposed situation, the positions of the smartphones are
not known in advance. In addition, the blind synchronization
technique may change the relationship between the time differ-
ence of arrival (TDOA) and the speaker’s position. Therefore,
BSS is suitable for separating them. In this study, we utilize
AuxIVA [24] based on a time-varying Gaussian source model
[28] with a small modification because of its high convergence
speed and good separation performance.

To solve the scale ambiguity, the back-projection [29] is ap-
plied, where the scale (which means the amplitude and phase
at each frequency in the case of frequency-domain BSS) of
the separated source is determined by the observed mixture at
the selected microphone. In the distributed microphone array,
the selection of the microphone is important because the input
SNR varies considerably among the microphones. To obtain
the result of back-projection to the closest microphone for each
source in a blind manner, all possible results of back-projection
are first calculated. Let yij(t) be the ith separated source pro-
jected to the jth microphone. Then, we select yiσ(i)(t) such that∑

i

∑
t y

2
iσ(i)(t) is maximized, where σ(i) represents a permu-

tation of the index i.
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Figure 3: Experimental setup

3.3. Automatic Speech Recognition System

The separated speech is analyzed and transcribed into text
data by Julius version 4.3.1 [30]. As acoustic features, 12-
dimensional mel-frequency cepstral coefficients (MFCCs), their
deltas, and the delta power (25 dimensions in total) are calcu-
lated with a frame length of 25 ms and a frame shift of 10 ms,
and cepstral mean normalization (CMN) is applied. The acous-
tic model was a GMM-HMM triphone, which was trained by
using the ASJ-JNAS corpus (86 hours) [31].

4. Experimental Evaluation
4.1. Experimental Configuration

An experiment to evaluate the proposed system by speech
recognition was conducted in an office room. Three loud-
speakers (BOSE Computer MusicMonitor) connected to a PC
were used to reproduce speech material simultaneously. The
speech materials were broadcast news articles included in the
Real World Computing Partnership (RWCP) SP99 Corpus (in
Japanese). Each loudspeaker played back a set of 18-20 sen-
tences spoken by a different speaker. The total length of the
speech was 6 minutes.

Three mobile devices (iPhone 5 Model A1453) were placed
at a distance of 20 cm from the loudspeakers. The distance
between the loudspeakers was 1 m. Fig. 3 shows the setup of the
experiment. The speech signals were individually recorded by
the three iPhones. The sampling frequency was set to 16 kHz.
After the recording had finished, the sound recorded at each
device was uploaded to Dropbox storage using a Wi-Fi channel.
The complete upload took less than 2 mintes and 25 seconds.

4.2. Evaluation Method

The ASR performance for the following signals was evaluated
by the mora and word error rates.

• Mix: Unprocessed signals (recorded mixture).
• IVA w/o sync: Separated signals obtained by applying

AuxIVA to the unprocessed signals.
• IVA w shift: Separated signals obtained by applying

AuxIVA to the synchronized signals by only compen-
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Figure 4: Waveforms of observed (Mix), synchronized and sep-
arated signals (IVA w sync), respectively

sating the different time offsets (the sampling frequency
mismatch remains).

• BM w shift: Separated signals obtained by applying a bi-
nary mask to the synchronized signals by only compen-
sating the different time offsets (the sampling frequency
mismatch remains).

• IVA w sync: Separated signals obtained by applying
AuxIVA to the synchronized signals by compensating
both the different time offsets and the sampling fre-
quency mismatch.

• Ideal: Recorded signals when only one source was
played (the ground truth of BSS).

Both of the blind synchronization and the blind source sep-
aration used here work in the STFT domain, but there are dif-
ferent trade-offs for determining the frame length. In this ex-
periment, they were selected experimentally. In the blind syn-
chronization, the frame length was 256 ms and the frame shift
was the half of the frame. In BSS based on AuxIVA, the frame
length was 1024 ms and the frame shift was the one fourth of
the frame. The number of iterations in AuxIVA was 30.

For comparison, we applied a simple binary mask as an
alternative BSS method (BM w shift). It was chosen because
many other source separation methods do not work well on
asynchronous signals. In our scenario, it was expected that each
microphone would capture the closest source with the maxi-
mum input SNR. Thus, the binary mask was designed as fol-
lows:

Mi(t, ω) =

{
1 (|Xi(t, ω)|2 ≥

∑
j ̸=i |Xj(t, ω)|2)

0 (|Xi(t, ω)|2 <
∑

j ̸=i |Xj(t, ω)|2)
,

where Xi(t, ω) denotes the signal recorded by ith microphone
in the STFT domain. The separated signal was obtained by the
inverse STFT of Mi(t, ω)Xi(t, ω).

3371



time [s]

f
r
e
q
u
e
n
c
y
 
[
k
H
z
]

0 2 4 6 8 10

0

2

4

6

8

time [s]

f
r
e
q
u
e
n
c
y
 
[
k
H
z
]

0 2 4 6 8 10

0

2

4

6

8

time [s]

f
r
e
q
u
e
n
c
y
 
[
k
H
z
]

0 2 4 6 8 10

0

2

4

6

8

time [s]

f
r
e
q
u
e
n
c
y
 
[
k
H
z
]

0 2 4 6 8 10

0

2

4

6

8

Figure 5: Spectrograms of Mix, BM w shift, IVA w sync, and
Ideal signals from top to bottom, respectively

4.3. Experimental Results

Fig. 4 shows the waveforms of observed (Mix), synchronized,
and separated signals (IVA w sync), respectively. The estimated
sampling frequency mismatches between two channels were
about 8.20 and -1.53 ppm. The estimated time offsets were -
119188 and -48210 samples. The Fig. 5 shows the spectrograms
of Mix, BM w shift, IVA w sync, Ideal signals, respectively.

The mora error rate and word error rate are shown in
Fig. 6.The results of Mix had more substitution and injection
errors because the other speaker’s voice was also transcribed
by ASR. Fig. 6 also shows that AuxIVA does not improve the
ASR performance not only without synchronization but also
with only compensation of the time offset. This indicates that
compensating only the time offset is not sufficient for AuxIVA
even it is small (about 8 ppm in this experiment). The binary
mask slightly reduced the error rate but it is not sufficient. It
is considered that the binary mask removed spectral informa-
tion which was necessary for ASR. On the other hand, AuxIVA
with the compensation of both the different time offsets and the
sampling frequency mismatch showed a better error rates, giv-
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Figure 6: The ASR evaluation results with (a) mora error rate
and (b) word error rate

ing results are much closer to those for Ideal. This indicates
that BSS based on AuxIVA in this case successfully reduced
the interference speech. The effect can be also confirmed in the
waveforms shown in Fig. 4.

5. Conclusion

In this paper, we presented a multi-talker speech recognition
system based on blind source separation using iPhones and
Dropbox. The blind synchronization technique based on the
stationary spatial model well compensated both the difference
in the time offset and the sampling frequency mismatch. The
experimental results showed that the combination of blind syn-
chronization and blind source separation contributed to signifi-
cantly improving the ASR performance in the multiple speaker
environment.
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