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Abstract
Keyword spotting (KWS) aims to detect predefined keywords in
continuous speech. Recently, direct deep learning approaches
have been used for KWS and achieved great success. However,
these approaches mostly assume fixed keyword vocabulary and
require significant retraining efforts if new keywords are to be
detected. For unrestricted vocabulary, HMM based keyword-
filler framework is still the mainstream technique. In this pa-
per, a novel deep learning approach is proposed for unrestricted
vocabulary KWS based on Connectionist Temporal Classifica-
tion (CTC) with Long Short-Term Memory (LSTM). Here, an
LSTM is trained to discriminant phones with the CTC crite-
rion. During KWS, an arbitrary keyword can be specified and
it is represented by one or more phone sequences. Due to the
property of peaky phone posteriors of CTC, the LSTM can pro-
duce a phone lattice. Then, a fast substring matching algorithm
based on minimum edit distance is used to search the keyword
phone sequence on the phone lattice. The approach is highly
efficient and vocabulary independent. Experiments showed that
the proposed approach can achieve significantly better results
compared to a DNN-HMM based keyword-filler decoding sys-
tem. In addition, the proposed approach is also more efficient
than the DNN-HMM KWS baseline.
Index Terms: Keyword Spotting, Long Short-Term Memory,
Connectionist Temporal Classification

1. Introduction
Keyword spotting (KWS) is one of the most widely used
speech-related techniques, which is a highly accurate and effi-
cient recognizer specializing in the detection of some words or
phrases of interest in continuous speech. KWS has many appli-
cations, such as speech data mining, audio indexing, phone call
routing, phone call monitoring, voice command. A famous ap-
plication is Googles voice search [1] which continuously moni-
tors keyword “OK Google” to initiate voice input.

Although a large number of keyword spotting techniques
have been proposed in the past several decades, most of them
are categorized into four groups. The first is large vocab-
ulary continuous speech recognition (LVCSR) based method
[2, 3, 4]. This is a very traditional and straight-forward ap-
proach to keyword spotting. It involves the processes of tran-
scribing speech into text and indexing for search, which causes
large resources consumption and is vulnerable to detect out-of-
vocabulary terms. Acoustic KWS [5] is another type of com-
mon KWS methods. Unlike LVSCR-based KWS, rather than
using a large vocabulary covering all potential spoken words,
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a smaller set of designated keywords and non-keywords are
modelled. A popular approach is the Keyword-Filler Hidden
Markov Model [6, 7, 8]. The third is the Query-by-Example
(QbyE) method [9, 10, 11], which utilizes keyword audio sam-
ples to generate a keyword template or a set of keyword tem-
plates and makes comparison between the test sample and the
keyword templates to spot keyword. The last one is lattice-
based approach [12, 13], which spots keywords by first per-
forming a N-best Viterbi recognition algorithm to construct a
database containing phone lattice representations for all audio
and then searching the keywords on that database. Since search-
ing is on text, the operations are very fast.

Many attempts to apply deep learning on keyword spot-
ting task have achieved significant improvements, such as
[14, 15, 16]. But most of them focus on spotting a set of spe-
cific keywords when designing the models, which leads to less
extensibility. In this paper, we follow with interest developing
an effective and efficient keyword spotting system for arbitrary
keywords while it does not require excessive amounts of spe-
cific training data and does not need to retrain the models.

The proposed method is based on the low-level signal pro-
cessing ability of Connectionist Temporal Classification (CTC)
with Long Short-Term Memory (LSTM). LSTM [17, 18] is
a type of recurrent neural network which has cycles feeding
the activations from previous time steps. LSTM is designed
for modelling of long-range temporal context that improves se-
quence labelling. CTC [19, 20, 21] is a criterion for training
recurrent neural networks to label unsegmented sequences di-
rectly, and it is first introduced in [19]. Unlike other objective
functions, CTC lets the network automatically locate and align
phone labels during training. The outputs of CTC are inter-
preted as a probability distribution over all possible phones and
an extra blank unit is utilized to model confusion information
of speech signal. An important property of CTC that makes the
proposed method possible is that the output probability distri-
bution of CTC is observed extremely sparse and peaky.

In [22], a keyword spotter for specific keywords using
BLSTM-CTC is first proposed but only the most intuitive post-
processing is applied. Besides, [23] comes up with a com-
plicated CTC-DBN decoder which is shown to outperform a
Keyword-Filler Hidden Markov Model system. In this pa-
per, the LSTM is unidirectional so the number of parameters
is reasonable for many applications. An efficient and concise
post-processing algorithm is also proposed, which generates a
searchable lattice on the basis of the output probability distri-
bution of LSTM-CTC and then performs search. Finally, the
decision is made through threshold comparison. Besides, some
measures are explored to further improve the performance of
the method.

The rest of the paper is organized as follows. Section 2 de-
scribes the details of applying LSTM-CTC for a KWS task, fol-
lowed by experiments in section 3. Finally, section 4 concludes
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Figure 1: Framework of the proposed LSTM-CTC method.

the whole paper and discusses future works.

2. LSTM-CTC for KWS
The proposed LSTM-CTC KWS framework is illustrated in
Figure 1. First, acoustic feature extraction is performed to
reduce the redundant information of the input speech signal.
Then, these feature vectors are fed frame by frame as input
to a well-trained acoustic LSTM-CTC network. A phone lat-
tice generation module receives the peaky phone posteriors of
LSTM-CTC output and produces a searchable phone lattice for
doing hypothesized phone sequence search, which will find out
the most similar phone sequence to the target keyword phone
sequence in the lattice. A decision then will be made by com-
paring the score of the resulting phone sequences from previous
search with a pre-estimated threshold. A threshold estimation
module is used to estimate different thresholds for different key-
words based on a set of training data and a lexicon, rather than
using a single fixed threshold for all keywords.

2.1. Phone Lattice Generation

As is shown in Figure 2, a typical LSTM-CTC network predic-
tion consists of a series of spikes or peaks separated by blanks.
Each spike corresponds to an output activation, which repre-
sents the posteriors of observing phones at a particular frame.
Blank means null prediction.

The lower portion of Figure 2 shows the generated phone
lattice corresponding to the above LSTM-CTC output. The first
step to obtain the lattice is to locate spikes. In this paper, the
most intuitive approach is adopted, i.e. by scanning the whole
time range, if at a frame the total posteriors of all non-blank
phones exceed a predefined threshold, hspike, then that frame
is a spike. Since actually the LSTM-CTC output is not perfect,
continuous frames may be considered as spikes in this way and
it will impair the efficiency and performance in later processes.
To address this problem, the phone of the highest posterior at
each frame is considered as the primary phone of that frame. If
continuous frames are considered as spikes and they share the
same primary phone, all these spikes are discarded except the
one with highest total posterior. Experiments show that setting
hspike between 0.1 and 0.3 is reasonable.

In the phone lattice, each spike corresponds to a column of
nodes, and each node represents a phone which has relatively
large posterior in the frame where the spike locates. For a spike,
phones of posteriors larger than hnode are selected as potential
phones and appended into the corresponding nodes column.

The nodes in every two adjacent columns are fully con-
nected. Thereby, any path from one node to another represents a
potential phone sequence which consists of phones represented
by nodes through the path. There is no weight on the connec-
tions between two nodes, however, nodes have posteriors denot-
ing the probabilities of observing the phones at the spikes.

Figure 2: LSTM-CTC output of a speech segment and the cor-
responding lattice. Different colours represent the posteriors of
different phones. The black line in the lattice indicates a poten-
tial path and the grey dashed lines are all valid connections.

2.2. Hypothesis Search

The lattice explained in Section 2.1 is searchable. In this sec-
tion, it is described how to find out the most similar phone se-
quence. The term “the most similar phone sequence” means
(i) the phone sequence has relatively high observation probabil-
ity, and (ii) the minimum edit distance (MED) [24] between the
phone sequence and the phone sequence of keyword is small.

Suppose T = {t1, t2, · · · , tn} is a target keyword phone
sequence of length n, where ti denotes the i-th phone in T .
Similarly, let H = {nij1 , n(i+1)j2 , · · · , n(i+m−1)jm} be a hy-
pothesized phone sequence, where nij is the j-th phone node in
the i-th column of the lattice. For convenience, H is also rep-
resented by H = {h1, h2, · · · , hm}, that is, hk = n(i+k−1)jk .
For a test utterance, let LH represent the corresponding CTC
phone lattice containing all possible phone sequences. Then,
the probability of target keyword T existing in LH is

P (T |LH) ∝ P (LH |T )P (T ) ≈ P (Hmax|T )P (T ) (1)

where Hmax is the most similar phone sequence that we want
to find out and it should have the highest probability given T in
LH . Due to T is given, whether the keyword T exists or not in
the test utterance is decided on the value of P (Hmax|T ). Next,
we find Hmax.

Hmax = argmax
H

P (H|T ) = argmax
H

P (T |H)P (H)

P (T )

= argmax
H

P (T |H)P (H)
(2)

where P (H) is the observation probability of H , and it can
be calculated by multiplying the posterior probabilities of every
phone nodes of H under the unigram assumption, that is,

P (H) =

m∏
i=1

P (hi|H1:i−1) ≈
m∏
i=1

P (hi) (3)

P (T |H) is not strictly estimated through multiplying the prob-
abilities of each edit operation when computing the minimum
edit distance between H and T , that is,

P (T |H) ,
MED(T,H)∏

i=1

P (opi|R = T,E = H) (4)

P (opi|R = T,E = H) =


P (insert(ei)) if opi ∈ I
P (delete(ri)) if opi ∈ D
P (ri|ei) if opi ∈ S

(5)
whereMED(T,H) indicates the minimum number of edit op-
erations between T and H by insertions, deletions or substi-
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tutions. P (opi|R = T,E = H) denotes given the refer-
ence sequence R is T and the hypothesis sequence E is H ,
the probability of the i-th edit operation opi between E and R.
Since MED algorithm is certain and both E and R are given,
each edit operation is known. According to the type of opi,
there are three kinds of probabilities: the probability of inser-
tion operation P (insert(ei)), the probability of deletion opera-
tion P (delete(ri)) and the probability of substitution operation
P (ri|ei). I , D and S denote the sets of insertion operations,
deletion operations and substitution operations respectively. ei
and ri are the phones involved in opi (insertion and deletion in-
volve one phone and substitution involves two) and they belong
to hypothesisE and referenceR respectively. These three kinds
of probabilities can be estimated from prior knowledge. In this
paper, they are estimated directly through a phone-level confu-
sion matrix [25] calculated by comparing the phone alignment
between an ASR hypothesis and the corresponding reference.

Instead of enumerating all possibleH in the lattice, formula
2 can be efficiently computed inO(Nnd) time using a dynamic
programming technique, where N is the total number of nodes
in the lattice, and d is the depth of the lattice. For normal key-
words and hnode, n and d are small (n < 15 and d < 5), andN
depends on the number of phones of a utterance. Therefore, the
hypothesis search is efficient. In addition, to avoid underflows
on digital computer when implementing the algorithm, the nat-
ural logs are applied to the calculations of probabilities.

2.3. Threshold Estimation

Since different keywords consist of different phones and for dif-
ferent phones the LSTM-CTC may have different modelling ef-
fects, the proposed approach tries to estimate flexible thresholds
for arbitrary keywords. Define the score of a phone sequence
H as score(H) = P (T |H)P (H), which can be calculated by
formula 3 and formula 4. Therefore, expanding P (T |H)P (H)
and reordering the factors, we get

score(Hmax) =

MED(T,Hmax)∏
i=1

P (opi|R=T,E=Hmax)
∏

h∈Hmax

P (h)

= {
∏

opi∈D∪S∪M

QT
LH

(ri)}{
∏

opi∈I

QT
LH

(ri)}

(6)

where

QT
LH

(ri) = P (opi|R = T,E = Hmax)P (ei) (7)

Here, for convenience in math,M is introduced to represent the
set of phone matching (fake operations), which does not con-
tribute to the edit distance, and let the probabilities of matching
“operations” equal one so that the formula makes sense. The
first part in formula 7 represents the probability of edit opera-
tion related to phone ri and the second part is the observation
probability of the phone ei that is the phone corresponding to
ri in E. To make the formula look compact, if opi is a deletion
operation, P (ei) is nonexistent, so its value is set to 1. We esti-
mate the threshold by averaging theQ values for each phone ri,
i.e. QT

LH
(ri). Analysis of data reveals that insertion operations

are always minority, so the second part of formula 6 is ignored
when estimating thresholds.

The policy of threshold estimation is as follows: for a phone
x, a pre-calculated peaky posteriors output of the LSTM-CTC
corresponding to a training utterance and an arbitrary keyword
T that contains x are selected randomly from a set of train-
ing data and a lexicon respectively. Then the hypothesis search
algorithm is performed to find out the most similar phone se-
quenceHmax for T in the latticeLH corresponding to the train-
ing utterance. AfterHmax is found, if opi ∈ S∪D∪M and ri

equals x, QT
LH

(ri) is computed through formula 7. This pro-
cess is repeated N times. The average Q value for phone x is
calculated as

Q̄(x) =
1

N

N∑
i=1

QT
LH

(i)
(x) (8)

whereQT
LH

(i)
(x) is theQ value of x computed in the i-th time.

For each phone, its Q value is computed in similar way. There-
fore, the threshold of a given keyword T = {t1, t2, · · · , tn}
can be estimated by

θ(T ) =

n∏
i=1

Q̄(ti) · C (9)

where C is a constant scaling factor.

2.4. Word Boundary

In addition to normal phones, a special label “wb” is introduced
to model the word boundaries. It is similar to the short pause
“sp” in ASR, but “wb” is forced to be inserted between every
two adjacent words in the reference when training the LSTM-
CTC and also inserted into keywords when doing KWS. For ex-
ample, keyword “NINETY NINE” becomes “wb NINETY wb
NINE wb”. When doing hypothesis search, an additional rule
is adopted, i.e. for all i which satisfies opi ∈ I and ei = wb,
the probabilities of opi and P (ei) are set to one. This extra
rule makes the insertion operations of “wb” allowable and has
no influence on probability calculations. The probabilities of
substitution operation and deletion operation of “wb” are still
computed through confusion matrix. The purposes of adding
“wb” are that (a) increasing the length of short keywords avoids
its phone sequence being a substring of a longer word, (b) the
insertion operations of “wb” having no influence on probabil-
ity calculations help the search algorithm to stride across those
misidentified spikes.

3. Experiments
3.1. Experiment Setup

3.1.1. Data

A speaker-independent 5k vocabulary dataset of the Wall Street
Journal (WSJ0) corpus [26] is used to train and evaluate the
proposed LSTM-CTC KWS method. Words or phrases which
satisfy the following conditions are selected randomly as the
keywords. (i) The keywords must appear at least 5 times in the
reference, that guarantees there are enough positive examples to
evaluate performance and reduce occasionality. (ii) The length
of the phone sequences of the keywords is between 3 and 12.
In addition, some similar words or phrases are added so that the
challenge is greater. In total, 50 keywords are used.

3.1.2. Evaluation Metrics

The evaluation metrics that we report are Equal Error Rate
(EER) and Figure of Merit (FOM). EER reflects the average
equal error rate at which the false alarm rate is equal to the false
rejection rate. The FOM is defined as the average Detection
Rate (DR) in the range of False Alarms (FA) from 0 to 10 . DR
and FA can be computed as,

DR =
NTP

NTP +NFN
, FA =

NFP

Dur ×Nkw
(10)

where NTP , NFN and NFP are the number of true positives,
false negatives and false positives respectively. Dur is the to-
tal duration of all test speech, and Nkw is the number of key-
words. For EER values, smaller is better. For FOM values,
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larger is better. Both EER and FOM are obtained by sweeping
the fixed threshold or the constant scaling factor C for LSTM-
CTC KWS.

3.1.3. Configuration

In this paper, the speech is analyzed using a 25ms Hamming
window with a 10ms fixed frame rate. Fourier-transform-
based log filter-bank features with 24 coefficients as well as
first and second derivatives are extracted using mean normal-
isation. Here, an alternative architecture to standard LSTM is
adopted, that is the so-called Long Short-Term Memory Pro-
jected (LSTMP) architecture [27]. In LSTMP, an extra lin-
ear recurrent projection layer connects from the output of the
LSTM and connects to the input of the multiplicative gates. By
increasing the number of memory cells and adjusting the size
of projection layers, LSTMP is an effective approach to con-
trol the number of parameters of LSTM without performance
deterioration. The LSTM input layer has a size of 72 corre-
sponding to an acoustic feature vector and the output layer has
69 softmax units corresponding to a set of phones of a CMU
pronouncing dictionary, and plus one softmax unit for blank la-
bel, and one optional softmax unit for “wb” if word boundaries
are modelled. The LSTM is composed of 2 hidden layers, and
the number of memory blocks in each hidden layer is 384 with
one memory cell per block, and the size of the linear projection
layer in each hidden layer is 128. The total number of parame-
ters in the LSTM is about 813K. The outputs are delayed by 5
frames since the information from the future frames may help
making better decisions for the current frame.

The LSTM network is initiated by cross-entropy criteria
and sequentially trained using CTC. The training algorithm is
stochastic gradient descent with a learning rate of 0.00006 and
a momentum of 0.9. Besides, hspike = 0.2 and hnode = 0.005.

3.1.4. Baseline systems

For performance comparison, conventional Keyword-Filler
Hidden Markov Models are trained and evaluated on the same
data set. The keyword models estimate the likelihood of the ob-
served feature vector sequences, and the filler model is used to
represent all non-keyword speech. Through Viterbi decoding,
the best path is found and if the path passes a keyword model
then the corresponding keyword is determined as detected. The
Keyword-Filler HMM topology is identical to the one used in
[15]. The EER and FOM are obtained by sweeping the tran-
sition probabilities between keyword and filler models. In this
paper, cross-word triphones are used and HMM states are clus-
tered by decision trees that leads to 1689 HMM states remained.
A GMM with 40 Gaussian mixtures and two DNNs of different
structures are used to compute the HMM state densities in dif-
ferent experiments and act as baselines. For better performance,
the acoustic features for the GMM is cepstral mean normalized
MFCC coefficients 1 to 12, log energy, as well as first and sec-
ond order delta coefficients. The acoustic features mentioned
in section 3.1.3 are still used for DNNs and LSTM. Besides,
one DNN has 4 hidden layers with 512 nodes per layer and a
larger DNN has 7 hidden layers with 512 nodes per layer. Both
DNNs take an 11-frame context window with 5 left frames and
5 right frames as input and compute activations using a sigmoid
function and output the posteriors of 1689 HMM states.

3.2. Performance Comparison

The performances of different KWS systems are shown in Ta-
ble 1. Here, both modelling word boundary and threshold es-
timation approaches are used in the LSTM-CTC KWS system.
The results indicate that LSTM-CTC KWS achieves significant
gains over the Keyword-Filler Hidden Markov Models (relative

Table 1: Keyword-Filler HMMs vs. LSTM-CTC KWS system.

EER FOM Parameters
GMM-HMM (40mix) 6.4 71.8 5.4M
DNN-HMM (4x512) 5.1 75.5 2.0M
DNN-HMM (7x512) 5.1 76.0 2.8M
LSTM-CTC KWS 3.6 85.2 813K

29% EER reduction, and 12% FOM increase), demonstrating
the effectiveness of the proposed method. It can be observed
that the larger DNN-HMM does not achieve more improve-
ments than the smaller DNN-HMM, we conjecture that the bot-
tleneck of performance may not be DNN but the method itself,
since the Keyword-Filler HMM approach may be vulnerable to
distinguish similar keywords. Besides, the LSTM-CTC model
also has less parameters than the baselines.

3.3. Effect of Modelling Word Boundary

Table 2: Performances of LSTM-CTC KWS with or without
modelling word boundary.

Keyword Length wb EER FOM
short × 9.0 76.9
short

√
4.5 87.3

long × 3.1 92.0
long

√
1.8 97.2

Those keywords which contain less than 6 phones are con-
sidered as short keywords, otherwise the keywords are long,
thereby, two keyword sets are tested. Table 2 illustrates the ef-
fect of modelling word boundary in LSTM-CTC KWS systems.
Both short keywords and long keywords yield performance im-
provements, 50% EER reduction for short keywords and 42%
EER reduction for long keywords. Besides, the performances
of long keywords consistently beat short keywords. This is be-
cause the phone sequences of short keywords are more likely
being substrings of other words or phrases and it will cause a
higher false alarm rate.

3.4. Effect of Threshold Estimation

Table 3: Performances of LSTM-CTC KWS with different
threshold policies.

EER FOM
Fixed threshold 4.0 81.4

Estimated on dev set 3.6 85.2

Table 3 indicates the performances of LSTM-CTC KWS
using a fixed preset threshold for all keywords or using the
threshold estimation approach mentioned in section 2.3 to cal-
culate various thresholds for different keywords. The utterances
of the development set of WSJ0 are used to estimated thresh-
olds. As expected, both EER and FOM become better with the
estimated thresholds.

4. Conclusions
In this paper, a novel KWS approach is proposed with LSTM-
CTC, which is utilized to identify phones by exploiting long-
range context information and generate a lattice, then the min-
imum edit distance based post-processing algorithm is imple-
mented on the phone lattice. Experiments on a WSJ0 dataset
showed that the proposed system prevailed over the traditional
HMM based approaches. Future work will look into combina-
tion of the LSTM-CTC approach and Keyword-Filler models.
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