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Abstract
Spoofing detection for automatic speaker verification (ASV),
which is to discriminate between live and artificial speech, has
received increasing attentions recently. However, the previous
studies have been done on the clean data without significant
noise. It is still not clear whether the spoofing detectors trained
on clean speech can generalise well under noisy conditions. In
this work, we perform an investigation of spoofing detection un-
der additive noise and reverberant conditions. In particular, we
consider five difference additive noises at three different signal-
to-noise ratios (SNR), and a reverberation noise with different
reverberation time (RT). Our experimental results reveal that
additive noises degrade the spoofing detectors trained on clean
speech significantly. However, the reverberation does not hurt
the performance too much.
Index Terms: Spoofing detection, noisy database, additive
noise, reverberation, phase-based feature

1. Introduction
Recently, automatic speaker verification (ASV) has been sig-
nificantly advanced to the point of mass-market adoption [1, 2,
3, 4]. However, most of current ASV systems assume human
voices, and there are concerns that whether the systems can still
achieve robust performance in the face of diverse spoofing at-
tacks. A spoofing attack is that an attacker attempts to manipu-
late an ASV result for a target genuine speaker to obtain access
permission. A significant amount of evidences have confirmed
the vulnerability of current state-of-the-art ASV systems under
spoofing attacks as reviewed in [5]. This has led to the active
development of spoofing countermeasures, also called spoofing
detection, that is to discriminate human and spoofed speech.

In the past several years, spoofing detection for speaker
recognition has been studied on a variety of diverse datasets.
In [6, 7], the Wall Street Journal (WSJ) corpus was used to as-
sess countermeasures for speech synthesis attacks. In [8], the
publicly available RSR2015 corpus was used to evaluate spoof-
ing detection for replay attacks. In [9, 10], synthetic speech
from the Blizzard challenge [11] was used for speech synthe-
sis spoofing detection. In [12], a recently released spoofing and
anti-spoofing (SAS) corpus as a standard spoofing database was
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used to assess speech synthesis and voice conversion spoofing
countermeasures. We note that WSJ, SAS and Blizzard chal-
lenge databases were recorded by high-quality microphones in
sound-proofing environment, while the RSR2015 corpus was
recorded by multiple mobile devices in a quiet office room. All
these databases do not have any significant channel and/or addi-
tive noise. These databases allow us to focus on spoofing effects
but do not simulate practical scenarios of ASV applications.

There are also some studies that use data with channel
noise. The National Institute of Standards and Technology
(NIST) Speaker Recognition Evaluation (SRE) 2006 database
which has significant telephone channel noise was used to as-
sess voice conversion spoofing countermeasures in [13, 14, 15,
16, 17]. In [18], a so-called AVspoof database includes replay,
speech synthesis and voice conversion spoofing attacks to sim-
ulate realistic scenarios, which re-recorded synthetic or voice-
converted speech using multiple mobile devices.

In general, the databases used in the past spoofing detection
studies seldom consider the noisy conditions1, even the stan-
dard spoofing detection databases: SAS and ASVspoof 2015
challenge2 databases. However, it is hard to avoid noise in
real scenario. Hence, another concern for ASV deployment
arises that whether currently developed spoofing detection al-
gorithms/systems are still effective under noisy conditions.

In this work, our focus is the spoofing detection under addi-
tive noise and reverberant conditions. We perform a preliminary
investigation of spoofing detection under noisy conditions using
the state-of-the-art countermeasure techniques and then answer
the following questions:

• Do current state-of-the-art spoofing detection algorithms
work well under additive noise and reverberant conditions?

• How additive noises and reverberation noise affect the
spoofing detection performance?

• What kind of noise is more serious to degrade the perfor-
mance of spoofing detection algorithms?

We believe better understanding of above questions, and the
noisy database will drive the development of generalised and
noise robust spoofing detection algorithms.

1Preliminary studies under additive noise conditions have been done
in [19, 20]. However, the reverberation noise is not considered in these
papers. Moreover, [19] use the different classifier and features and also
lead to different conclusions of this work.

2SAS corpus is available at: http://dx.doi.org/10.7488/
ds/252 and ASVspoof 2015 corpus is available at: http://dx.
doi.org/10.7488/ds/298
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2. Noisy Database
In order to represent the practical application scenarios for
spoofing detection and compensate to our previous noisy
database [20], we generate a database in both additive noise
and reverberant environments based on the ASVspoof 2015
challenge database [21]. The details and protocols about the
ASVspoof database can be found in [21].

This noisy version aims to quantify the effects of current
spoofing detection algorithms in additive noise and reverberant
conditions. This database will also facilitate future assessment
work in this task. In this section, we will briefly introduce the
types of noise to be added, and the procedure of adding noise.

2.1. Noise signals

Five types of additive noises and three reverberation noise, rep-
resenting the probable application scenarios, are used for the
construction of the noisy ASVspoof database. Additive noises
are chosen from two databases. White noise, speech bab-
ble and vehicle interior noise are selected from NOISEX-92
database [22]. While, street noise and cafe noise are selected
from QUT-NOISE database [23]. These are standard types of
additive noise widely used for speech recognition [24, 25, 23],
speaker verification [26, 27] and speech enhancement [28]. We
can classify these additive noises into stationary noise, includ-
ing white noise and Volvo noise, and non-stationary noise, con-
sisting of babble noise, street noise and cafe noise. The room
impulse responses (RIRs) of the reverberation noises are simu-
lated of a small size room. We briefly describe these noises as
follows:

• White Noise: The random signal with a constant power
spectral density.

• Babble Noise: Speech babble and the recording is made in
a canteen with 100 people speaking.

• Volvo Noise: Vehicle interior noise and the recording is
made in Volvo 340 on an asphalt road, rainy conditions.

• Street Noise: Mixed noise, which is made at the road-
side near inner-city, mainly consisting of road traffic noise,
pedestrian traffic noise and bird noise.

• Cafe Noise: Mixed noise, which is made in outdoor cafe en-
vironment, mainly consisting of speech babble and kitchen
noise from the cafe environment.

• Reverberation Noise: It is a room impulse response (RIR)
simulated with a small size room.

2.2. Adding noise

The data from ASVspoof database are considered as clean data.
Noises are artificially added to the clean data. For each clean
signal in the development and evaluation sets of ASVspoof
database, eighteen noisy versions of the signal are generated,
consisting of five additive noises in three SNR levels and rever-
beration noise with three reverberant times (RTs). The sampling
frequency of all the data is 16 kHz.

To add the additive noise, the Filtering and Noise Adding
Tool (FaNT)3 is used. The noisy signals are generated by adding
the clean speech and noise files together at various SNRs. As
the silence periods appear in many speech files of ASVspoof
database, it is important to calculate the SNR only based on
the sections of speech signal. Given a clean signal, we take a

3http://dnt.kr.hs-niederrhein.de/

segment of the noise signal with equal length as the clean signal
but random starting point from the whole noise file. Then the
noise segment is scaled and added to the clean signal in 20 dB,
10 dB and 0 dB SNR levels.

To add the reverberation noise, we convolve the clean sig-
nals with simulated RIRs. Three different acoustic conditions
are simulated, considering the RT in 0.3 second, 0.6 second and
0.9 second.

After the adding noise process, the clipping may occur. In
order to maintain a stable spectrogram representation of the sig-
nal, the signal is scaled to avoid the clipping.

3. Benchmarking system
In order to demonstrate the utility of the ASVspoof noisy
database, we conduct a series of experiments to examine the
performance of our spoofing speech detection system on both
additive noise and reverberant scenarios.

The detection system consists of three parts, 1) the feature
extraction module; 2) the classification module; and 3) the score
fusion module.

3.1. Feature extraction

Similar to our previous system described in [29, 30, 20], six
types of feature are extracted. Given a noisy waveform, the
short-time Fourier transform (STFT) is applied on the speech
signal using analysis window of 25ms with 15ms overlap. For
the n-th frame, the magnitude and phase spectrum, |X(n, ω)|
and θ(n, ω), are obtained by X(n, ω) = |X(n, ω)|ejθ(n,ω).
Then, two magnitude-based features, namely log magnitude
spectrum (LMS) and residual log magnitude spectrum (RLMS)
are derived from |X(n, ω)|. Four phase-based features, namely
instantaneous frequency derivative [31] (IF), baseband phase
difference [32] (BPD), group delay [33] (GD) and modified
group delay [33] (MGD), are derived from θ(n, ω). The FFT
length is chosen to be 512 and the dimension of all the original
features are 256. Please find the detail information in [29, 30].

3.2. Classifier

The multilayer perceptron (MLP) based spoofing speech detec-
tion system [30, 20] is used in this work. Each of the features
mentioned above with its delta and acceleration coefficients is
used as the input vector to train its own classifier. The MLP,
which contains one hidden layer with 2,048 sigmoid nodes, is
used to predict the posterior probability of the input vector being
synthetic speech. The score is calculated by averaging the pos-
terior probabilities of all the frames over the utterance. Noted
that, all the MLP classifier are trained from clean data.

3.3. Evaluation metrics and fusion

The equal error rate (EER) is used to evaluate the system per-
formance.

As described in Section 3.1, different features are designed
to detect different types of artifacts. In order to benefit the ad-
vantages of each feature and improve the system stability, a
score level fusion is applied.

To avoid the over-fitting problem, the scores of all systems
are simply averaged to produce the final score. The Bosaris
toolkit4 is used to compute the EERs of each feature and the
fused system.

4https://sites.google.com/site/bosaristoolkit/
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4. Experiments
4.1. Experimental setups

The dataset used in the experiments consist of three subsets,
including training set, development set and evaluation set. To
simplify the experiments, the training set is clean speech data
taken from ASVspoof database. As the training set consists of
clean data only, it models the speech without noise distortion
and represents all the speech information. The best performance
of the clean classifier is obtained in the case of testing on clean
data, which can be found in our previous work [30].

The development and evaluation sets are chosen from the
noisy ASVspoof database, including all the eighteen noise sce-
narios as described in Section 2. As the results on the devel-
opment set are similar to that of the S1 to S5 on the evaluation
set, we only report the results of the evaluation set. Because
the classifier used in these experiments is the same as that of
our previous work [30], these results are comparable with the
results in clean condition.

4.2. Evaluation results
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Figure 1: Boxplot of averaged EERs (%) for different features
on the noisy evaluation set. Red lines are medians, box edges
are at 25% and 75% quantiles.

The results of different features on the noisy evaluation set
are shown independently as the known attacks (S1-S5), the un-
known attacks (S6-S9) and the unknown attacks generated by
waveform concatenation (S10). For better analyse the perfor-
mance of different feature across all the noisy conditions, box-
plots are also provided in Figure 1. The boxplot for results of
spoofing attack subsets, S1 to S5 and S6 to S9, are presented in
Figure 1(a) and Figure 1(b), respectively. The detailed results
are listed in Appendix A Table 1 .

We first compare the system performance across different
types of attack under noise conditions. Figure 1(a) shows the
system performance of S1-S5 attacks. Because such attacks are
available for training, even in noisy condition, the lower error
rates are obtained in these attacks than the rest types of attack.
Although the error rates of S6-S9, as shown in Figure 1(b), is
higher than that of S1-S5, the results still comparable. This is
consistent with the results in clean condition [30]. For S10 at-
tack, as shown in Table 1 of Appendix A, the error rates of all
the features are significantly higher than that of S1-S9. Hence,
we conclude that in both clean and noisy conditions, the detec-
tion of S10 is still the most challenge task among the spoofing
attacks.

Then we analyse the effect of noisy data for the detection
system using different features. In general, across the attacks
S1-S9, the magnitude-based features, LMS and RLMS, perform
worse than the phase-based features, IF, BPD, GD and MGD. In
particular, in all the spoofing attacks, the RLMS obtains much
higher EERs than other features. This may be due to that the

LPC filter is not robust in noisy environments [34], which af-
fects the quality of RLMS. Among the phase-based features,
IF and BPD outperform other features in terms of the average
EERs over all the noise scenarios. These observations are very
different from [19], which report the magnitude-based features
are more useful for spoofing detection under noisy scenarios.

As shown in Table 1 of Appendix A, some features are ef-
fective for particular noise scenario. For example, in the babble
noise scenario, the MGD is capable to obtain low error rates.
While in white, street, and cafe noises, IF and BPD perform
much better than other features.

4.3. Fusion results
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Figure 2: Boxplot of fused EERs (%) for S1-S9 attacks under
different noise scenarios of the evaluation set. Red lines are
medians, box edges are at 25% and 75% quantiles.

We first examine the results for S1-S9 attacks in additive
noise and reverberation noise scenarios on the evaluation set.
The boxplot of fused EERs for S1-S9 attacks under different
noise scenarios are shown in Figure 2. From figure we observed
that, for additive noise, the systems across all the noise scenar-
ios perform worse than that of clean condition. The detection
performance deteriorates as SNR decreases.
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Figure 3: Fused EERs (%) for S10 attacks under different noise
scenarios of the evaluation set.

Among all the additive noise scenarios, the system under
Volvo noise scenario performs best, which constantly achieves
lowest error rates. Especially, at SNR of 0 dB, the system un-
der Volvo noise scenario outperform that of other noise scenar-
ios significantly. This because the energy distribution of Volvo
noise concentrates more on very low frequency (below 1 kHz),
while the information in high frequency region is less distorted.
This consistent with our previous results reported in [30], which
confirms the effectiveness of the high-frequency region for syn-
thetic speech detection. For the non-stationary noisy conditions,
the features distorted by such noise are time-varying. Conse-
quently, in these noise conditions, at SNR of 0 dB, the sys-
tem performance degrades more than stationary noise scenar-
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ios. This provides more challenge to the system to detect the
spoofed attacks in such noisy conditions.

For reverberation noise scenarios, we found that the influ-
ence of reverberation noise for the system performance is very
limited. Even use the RIR with different reverberation time, the
system performs very stable. This may because the reverberant
do not introduce new type of noise, the pattern still visible for
the spoofing detector.

Then, we analyse the fused results of S10 attack in different
noise scenarios on evaluation set. As shown in Figure 3, under
additive noise scenarios, the system performs worse than that
of clean condition. Alternatively, we surprisingly found the re-
verberation can significantly improve the performance on S10,
and the performance further improve as the RT increase. It is
may because that the reverberation performs temporal process-
ing that helps to reveal the artefacts in features. For concate-
nated speech, there must be some discontinuity in the magni-
tude and phase. With the temporal filtering of reverberation,
such discontinuity may become more obvious.

Finally, we analyse the averaged results across all the spoof-
ing attacks. As shown in Table 2 of Appendix A, the sys-
tems performance heavily deteriorate under additive noise con-
ditions. The detection performance decreases significantly as
lower SNR. While, compare to clean condition, the systems per-
formance are improved under reverberant scenarios.

5. Conclusions
In this paper, we constructed a noisy database, generated by
adding both additive noise and reverberant scenarios, for spoof-
ing and anti-spoofing research. To provide the benchmark re-
sults, the state-of-the-art spoofing detection system is used to
detect the spoofing attacks in noisy conditions. The preliminary
results using the classifier trained from clean data shown that,

• the systems performance degrade in all the additive noise
scenarios and further deteriorate as SNR decreases;

• compare to the reverberation noise, the additive noises af-
fect the detection system more seriously;

• the reverberation noise can improve the performance on
concatenated speech;

• the system performance varies significantly under different
noise scenarios and the phase-based features are more ro-
bust to noise than magnitude-based features.

In the future, we plan to exam the effectiveness of multi-
condition training for spoofing detection under noisy condi-
tions. We also going to investigate the reason why the rever-
berant is effective for S10 concatenated speech detection.

A. Appendix

Table 1: Average EERs (%) of different features on the noisy evaluation set. Clean indicates the results of our previous work [30].
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Table 2: EERs (%) of fused system on both development and evaluation sets. Clean indicates the results of our previous work [30].
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