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Abstract
Deep neural network (DNN) based acoustic models have ob-
tained remarkable performance for many speech recognition
tasks. However, recognition performance still remains too low
in noisy conditions. To address this issue, a speech enhance-
ment front-end is often used before recognition. Such a front-
end can reduce noise but there may remain a mismatch due to
the difference in training and testing conditions and the imper-
fectness of the enhancement front-end. Acoustic model adapta-
tion can be used to mitigate such a mismatch. In this paper, we
investigate an extension of the linear input network (LIN) adap-
tation framework, where the feature transformation is realized
as a weighted combination of affine transforms of the enhanced
input features. The weights are derived from a vector character-
izing the noise conditions. We tested our approach on the real
data set of CHiME3 challenge task, confirming the effectiveness
of our approach.
Index Terms: speech recognition, deep neural network, adap-
tation

1. Introduction
Progress in acoustic modeling with deep neural network
(DNNs) [1] has significantly improved the performances of
automatic speech recognition (ASR). However, DNN-based
acoustic models still suffer in adverse environments such as in
the presence of noise or reverberation. Using a speech enhance-
ment (SE) front-end prior to ASR has been shown to greatly
improve performance in such cases [2, 3, 4, 5]. However, this
may not be sufficient as the SE front-end cannot completely re-
move the mismatch between training and test conditions. This
mismatch is mainly due to the imperfectness of speech enhance-
ment that cannot fully suppress noise or that introduce distor-
tions. Moreover, the acoustic models are sometimes trained
using noisy speech instead of enhanced speech as it has been
shown to be more robust when testing on conditions unseen
during training [5, 4]. Consequently adaptation is often used
to reduce the mismatch between training and testing conditions
and further improve performance.

There are three main approaches for acoustic model adap-
tation i.e., feature transformation, model compensation and ex-
ploiting auxiliary features. Input speech features can be trans-
formed based on generative model such as CMLLR [6] or a
discriminative model [7, 8]. For example, linear input network
(LIN) [8] simply adds an adaptation layer to the input of a DNN
with linear activation. The LIN parameters are obtained to min-
imize the cross entropy given some adaptation data. In a simi-
lar way, other adaptation layers have been used within the net-
work such as linear hidden layer (LHN) [8], linear output layer

(LON) [9] and linear hidden unit contributions (LHUC) [10].
A simple alternative consists of retraining all or part of the pa-
rameters of a DNN using the adaptation data, which has been
shown to work relatively well when dealing with a relatively
large amount of adaptation data [4, 5, 11]. Finally, exploiting
auxiliary features such as noise estimates or i-vectors is another
effective way to generate a DNN adaptive to the acoustic con-
ditions [12, 13, 14, 15, 16]. In particular, noise aware training
simply adds an estimate of the noise to the input features of a
DNN to make the DNN adaptive to the noise conditions.

In this paper we focus on the situation where adaptation
data cover different noise environments. This can have very
practical applications if we consider the case where a speaker
uses his device in various environments. Adaptation in such
scenarios have been studied for legacy GMM-HMM ASR sys-
tems [17, 18]. In such a case, globally adapting the acoustic
model may not be optimal. Therefore, we propose an extension
of LIN, where the feature transformation parameters are made
dependent of a noise context feature characterizing the noise
environment of an utterance. This is realized by having a set of
LIN transforms that process the input features in parallel. Each
set of LIN transform is associated with a class of noise environ-
ments. The different compensated features are then weighted
averaged with weights derived from the noise context features.
We call such a structure factorized LIN (FLIN). The noise con-
text features are derived from the noisy and enhanced features
using a small auxiliary network that is jointly learned with the
FLIN transforms. The proposed FLIN approach is related to
cluster/context adaptive DNNs [19, 20, 21] with the main differ-
ence being that the factorized layer is not learned from training
data but from adaptation data. Accordingly, we reduce the num-
ber of parameters by using diagonal transformation matrices for
the FLIN to cope with the relatively small amount of adaptation
data.

We tested our approach on the CHiME3 noisy recognition
task. We use an SE front-end to reduce noise and reverbera-
tion and a strong deep convolutional neural network (CNN)-
based back-end trained on multi-channel noisy speech. We em-
ploy adaptation to further reduce mismatch between testing and
training conditions. This mismatch originates here from three
factors, the environment, speaker and the fact that we use a
speech enhancement front-end for testing but not for training.
Our experiments reveal that the proposed FLIN can outperform
conventional LIN based adaptation when various noise condi-
tions are seen during adaptation. The proposed method can also
be combined with network retraining based adaptation, which
further improves performance.

In the remainder of the paper, we introduce notations and
revise conventional LIN in Section 2. Section 3 discusses the
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proposed FLIN approach. Some previous related works are dis-
cussed in the Section 4. We discuss our experimental settings
and results in Section 5. Finally, Section 6 concludes the paper
and presents potential future research directions.

2. Linear input network adaptation
LIN is a simple approach to perform adaptation of a neural net-
work. It adds a hidden layer to the bottom of the network with a
linear activation. Therefore, LIN performs a linear transforma-
tion of the input features as,

x̂t = L(xt) = Wxt + b, (1)

where x̂t is the transformed feature vector at time frame t, xt is
the input feature vector at time frame t, L() represents the affine
transform, which has a weight matrix W and a bias vector b.
The parameters of the affine transform can be computed by error
backpropagation given some adaptation data to minimize cross
entropy. In this paper, we focus on unsupervised adaptation
where the labels are obtained from a first decoding pass using
an unadapted acoustic model.

Note that we use here diagonal transformation matrices be-
cause using full transformation matrices may not be suitable
when using CNN, as it may modify the time-frequency struc-
ture of the input features, which CNN relies on. Moreover, us-
ing diagonal transformation matrices reduces the number of pa-
rameters significantly and may therefore be more suitable when
dealing with a relatively limited amount of adaptation data.

LIN has been shown to improve performance in many tasks.
However, it assumes that the adaptation data are relatively ho-
mogenous since it uses the same affine transform for all fea-
tures.

3. Factorized LIN
When adaptation data include multiple acoustic conditions, LIN
may not be optimal since a single transform may not cover the
multiple conditions well. We are interested in scenarios where
adaptation data from a speaker cover various noise environ-
ments such as in the third CHiME challenge task. In such a case,
the LIN transform could potentially perform both speaker and
environment adaptation. However, if multiple noise environ-
ments are observed for a same speaker, the capability to adapt
to a specific environment will be reduced. To deal with such
cases, we propose to extend the conventional LIN to FLIN.

3.1. Principles

Figure 1 shows a schematic diagram of the proposed FLIN. The
LIN affine transform is factorized in a set of N transforms each
associated with a noise context class. The transformed features
are obtained by taking the weighted average of the transformed
features for each class as,

x̄t =

N∑
n=1

ᾱn,tx̂n,t, (2)

where αn,t is a scalar value that represents the posterior of the
noise context class at time frame t, and x̂n,t is the output of nth

LIN transformation at time frame t. Note that the time frame
index t indicates the frame index of the center frame in a block
of frames. The output of the nth LIN transform is given by,

x̂n,t = Ln(xt) = Wnxt + bn, (3)
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Figure 1: Schematic diagram of the proposed factorized LIN.

where Ln is the affine transform associated with the nth noise
context class, Wn and bn are the weight matrix and bias vector
associated with the affine transform Ln(). With the proposed
FLIN, it becomes possible to select the LIN transforms that cor-
respond to the noise context, which is more flexible than the
conventional LIN.

3.2. Noise context posterior computation

A key element of FLIN is the computation of the noise
context posteriors. Building on our previous work on
speaker adaptation[21], we propose to compute the noise
context posteriors using an auxiliary multilayer perceptron
(MLP). We derive the posteriors of the noise context αt =[
α1,t α2,t · · · αN,t

]
by forwarding noise context fea-

tures σx,t through an MLP as,

αt = MLP(σx,t). (4)

To ensure that the weights αn,t correspond to posteriors, we
constrain them to sum up to one. This is realized using a soft-
max activation function for the output of the auxiliary MLP. We
use the squared difference of the noisy and enhanced speech
features as noise context features,

σx,t = (yt − xt)
2, (5)

where yt is a noisy speech feature at time frame t and xt is an
enhanced speech feature at time frame t. This choice of auxil-
iary features is motivated by previous work on uncertainty de-
coding [22, 23, 24, 25, 26]. We obtain utterance level noise
context by simply averaging the frame level noise context fea-
tures over an utterance. Note that it is possible to connect the
auxiliary MLP and the main network so that the factorized LIN
parameters and the auxiliary MLP parameters can be jointly
trained. This assures that the noise context posteriors are op-
timal for the cross entropy criterion. We perform adaption by
estimating only adaptation parameters, i.e. the auxiliary MLP
and the factorized LIN affine transforms, using adaptation data.
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4. Relations to prior works
There have been a few related studies investigating the use of
auxiliary information for DNN based adaptation in noisy con-
ditions [13, 27, 28, 29]. In [13, 28] an estimate of the noise or
the signal to noise ratio (SNR) is added to the input of the DNN
to make it adaptive to the noise conditions. In [27], the weight
and bias parameters of the hidden layers are expressed as a poly-
nomial function of the SNR, which enables finer adaptation. In
these approaches, the network is trained with the auxiliary fea-
tures, whereas we use auxiliary features for feature compensa-
tion and therefore we can re-use an already trained networks.

Li et al [29] proposed to include auxiliary features consist-
ing of noise estimates and noisy speech directly to the input
of the softmax layer. This approach is related to vector Taylor
series (VTS) based adaptation that was widely used for noise
adaptation in legacy GMM-based ASR systems. The main dif-
ference with our work is that we perform feature compensation
since we expect that the input or lower layers of the network
may be more affected by the mismatch between training and
testing conditions [27, 30]. Moreover, we exploit the auxiliary
information to select the feature transformation related to the
noise context instead of inputting it to the softmax layer.

Finally, the proposed FLIN presents a similar factorized
structure as context/cluster adaptive DNNs [19, 20, 21, 31].
In particular, an auxiliary network was also introduced in [21]
to compute class weights. However, [21] factorized a hidden
layer of the network and learned the parameters during training,
which enables rapid single pass adaptation. The proposed FLIN
performs feature compensation and learns the parameters with
adaptation data, which requires two decoding passes but may
potentially be better when dealing with acoustic conditions un-
seen during training. Note that we also use auxiliary features
representing the noise context, whereas [21, 31] employed i-
vectors.

5. Experiments
5.1. Dataset

We perform experiments using the CHiME-3 corpus [32] that
consists of real speech recordings collected in four different en-
vironments, i.e. cafe (CAF), street junction (STR), public trans-
port (BUS), and pedestrian area (PED). The corpus includes
also simulated training and test data sets. In this paper, we dis-
carded the simulated test data sets from our evaluation. The
speech data were recorded using a tablet device with six micro-
phones. The corpus consists of read speech, where the prompts
were taken from the WSJ0 corpus. The training set comprises
1600 real and 7138 simulated utterances, which amounts to 18
hours of speech. The development and evaluation sets for the
real recordings consist of 1640 and 1320 utterances, respec-
tively, spoken by four different speakers. The test data from
a given speaker cover the four different environments. Accord-
ing to the CHiME-3 challenge regulation, it is allowed to exploit
speaker labels to perform adaptation. However, it is not allowed
to use environment labels.

5.2. Settings

5.2.1. Baseline system

Our baseline system uses of a CNN based acoustic model. It
consists of two convolutional layers and two fully connected
layers. The first convolutional layer uses (5 × 11) filters, 3
input and 180 output feature maps. The second convolutional

layer uses (1 × 5) filters, 180 input and 180 output feature
maps. After each convolution layer, the resolution of the out-
put feature map is reduced using max-pooling. Three fully
connected layers with 2048 output nodes are used. Finally, a
softmax layer is used to compute state posteriors. The out-
put consists of 5976 output units corresponding to the Hid-
den Markov Model (HMM) states. We used sigmoid activa-
tion functions for all hidden layers. We used speech features
consisting of 40 log mel filterbank coefficients appended with
static, ∆ and ∆∆ coefficients. These features were extracted
with a 25-msec sliding window with a 10-msec shift. We em-
ployed 11 concatenated speech features as input to the CNN
(1320 dimensions in total). These features were arranged in
three (40 × 11) input feature maps, one for static, ∆ and ∆∆
coefficients. The speech features were processed with utterance
level cepstral mean normalization, and further normalized using
mean and variance normalization parameters calculated on the
training data. The acoustic model was trained using audio from
multiple channels, i.e., multi-microphone training. By doing
this, the acoustic model is exposed to larger feature variations
during training, which makes it more tolerant to environmental
variability. Note that during training we used the noisy speech
signals without any speech enhancement front-end. We found
that this strategy does not only simplifies the experiments with
various speech enhancement front-ends, but also improves the
robustness of the acoustic model [5]. We trained the acoustic
model using mini-batch stochastic gradient descent (SGD) to
minimize a cross entropy criterion. We used an initial learning
rate of 0.01, a momentum of 0.9 and a batch size of 128. The
learning rate was gradually decreased when the frame accuracy
did not improve for a cross validation set. The learning was
stopped after 20 epochs. We used dropout regularization for all
full connected layers. For testing, we used a speech enhance-
ment front-end to reduce noise and reverberation. Our speech
enhanced front-end is described in [4, 33]. It consists of two
steps: WPE-based dereverberation and MVDR beamforming.
The acoustic beam of the MVDR is controlled using steering
vectors estimated based on spectral masks. We used a trigram
language model for decoding.

5.2.2. Adaptation

We compare three approaches for unsupervised speaker adap-
tation, i.e. model parameter retraining, LIN and the proposed
FLIN. In all three cases, we used the same labels estimated
from a first decoding pass and performed adaptation using all
data for each speaker separately. Adaptation with model pa-
rameter retraining simply retrains all acoustic model parame-
ters. This method was used in the system we submitted to the
CHIME-3 challenge [4]. LIN adaptation is described in Sec-
tion 2. We used diagonal weight matrices for the affine trans-
forms. The initial value of the affine transforms were set to an
identity matrix and a zero bias vector so that the adaptation can
starts from the conventional CNN configuration performance.
For the proposed FLIN, we used 4 noise context classes. The
auxiliary MLP for context class weights consists of one hidden
layer with 4096 neurons. We also used sigmoid activation func-
tions for the auxiliary MLP. The parameters of the MLP were
randomly initialized. However, the initial performance could be
preserved because the noise context class weights sum up to 1,
and because as for LIN, we used diagonal weight matrices and
initialized the weight matrices to a identity matrices and the bias
vectors to zero. For all adaptation experiments, we used an ini-
tial learning rate value of 5e-4, a momentum of 0.999 and 40

3815



Table 1: WER for the CHiME3 development set. The results are
shown for the baseline system and for unsupervised adaptation
with retraining, LIN, FLIN and FLIN with retraining. The best
results are highlighted with bold fonts.

BUS CAF PED STR Ave
Baseline 7.82 5.43 5.62 6.05 6.23
Retrain 7.30 4.72 4.70 5.16 5.47
LIN 7.24 4.98 5.19 5.69 5.77
FLIN (utt) 7.15 5.00 5.29 5.66 5.77
FLIN + retrain(utt) 6.95 4.47 4.43 5.09 5.29
FLIN + retrain(frame) 6.67 4.47 4.42 5.05 5.15

Table 2: WER for the CHiME3 evaluation set. The results are
shown for the baseline system and for unsupervised adaptation
with retraining, LIN, FLIN and FLIN with retraining. The best
results are highlighted with bold fonts.

BUS CAF PED STR Ave
Baseline 11.89 8.12 8.95 8.90 9.32
Retrain 10.12 6.57 7.54 7.53 7.94
LIN adaptation 10.57 7.36 8.18 7.90 8.50
FLIN (utt) 10.80 7.09 7.90 7.76 8.38
FLIN + retrain(utt) 9.71 6.69 7.73 7.25 7.82
FLIN + retrain(frame) 9.37 6.40 7.33 7.25 7.58

epochs.

5.3. Result and discussion

Tables 1 and 2 show the results in terms of word error rate
(WER) for the development and evaluation sets, respectively.
The results are shown for the baseline system and for unsuper-
vised adaptation using retraining, LIN, FLIN and FLIN with
retraining. Our baseline system achieves WER of 6.23% and
9.32% WER for the development and evaluation set respec-
tively. These numbers are competitive for the task [32] but can-
not be directly compared with the best results we submitted to
the CHiME-3 challenge[4], because to speedup the experiment
turnover, we used a simpler ASR system with less CNN layers
than in [4] and a trigram language model instead of an RNN.
Note that we also used a trigram language model to generate
the adaptation labels.

Speaker adaptation is very effective for the CHiME-3 task
as shown by the large performance improvement obtained when
retraining the acoustic models (up to 14 % relative WER reduc-
tion). Note that retraining means here updating all parameters of
the baseline system. The large improvement observed is due to
the fact that we compensate for the mismatch originating from
the speaker and from the use of the speech enhancement front-
end during testing using the unsupervised adaptation data. The
fact that this simple approach performs well despite the large
number of parameters it involves is also a sign that the amount
of adaptation data is relatively large.

LIN based adaptation also improves performance compared
to the baseline but the performance improvement is less than for
retraining. This can be explained because LIN only transforms
the features and does not adapt the acoustic model parameters.
It is therefore less powerful when the amount of adaptation data
is sufficient for retraining.

FLIN achieves comparable performance as LIN for the de-
velopment set and slightly better for the evaluation set. In this

Table 3: WER for CHiME3 experiment on the development and
evaluation sets. The results are shown for each speaker. Com-
parison of our baseline, baseline with retrain all parameter,
FLIN with retrain all parameters. The best results are high-
lighted with bold fonts.

Baseline Retrain FLIN
+ retrain (frame)

F01 6.78 5.33 5.08
F04 6.33 5.64 5.12
M03 5.22 4.90 4.49
M04 6.54 6.01 5.93
F05 10.69 8.81 8.66
F06 9.08 7.90 7.39
M05 7.97 5.89 5.76
M06 9.95 9.17 8.54

case, we use utterance-level noise context features. We used
here 4 classes as it performed slightly better than 2 or more
classes. We did not observed large performance degradation
when using a larger number of classes.

FLIN can be combined with retraining. In this case, all
parameters of the network including the CNN back-end, LIN
transforms and the auxiliary MLP are updated. Using utterance-
level auxiliary features we could observe a small improvement
with ”FLIN + retrain” compare to ”retrain”. However, the im-
provement becomes larger when we use frame-level features
(”FLIN + retrain (frame)”). We observed consistent improve-
ments compared to retraining for both development and eval-
uation sets. FLIN with retraining outperforms baseline with
17.3% and 18.6% relative WER reduction on the development
and evaluation sets, respectively. It also outperforms retraining
based adaptation with 6.0% and 4.5% relative WER reduction
on the development and evaluation sets, respectively.

We further analyzed the performance for each speaker. Ta-
ble 3 shows the averaged WER per speaker for the baseline,
retraining and FLIN with retraining. The upper part of the re-
sults correspond to the development set and the lower part to the
evaluation set. The results of Table 3 confirm that the proposed
FLIN with retraining outperforms the baseline and retraining
for all speakers. The relative WER reduction ranges from 9 to
27 % compared to the baseline.

6. Conclusions
In this paper, we investigated an extension of the LIN adapta-
tion framework, where the feature transformation is realized as
a weighted combination of affine transforms of the input fea-
tures. The weights are derived from a noise context vector char-
acterizing the noise environments. We tested our approach on
the real data set of the CHiME3 challenge task showing promis-
ing results suggesting that the noise context can be combined
with speaker information to further improve the performance
of noise robust speech recognition. In future works, we will
investigate a pre-training step where the MLP is trained to pre-
dict the noise context classes in advance. Moreover, we will
also explore extension of FLIN for speaker and noise adaptive
training[31].
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