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Abstract
The availability of realistic simulated corpora is of key impor-
tance for the future progress of distant speech recognition tech-
nology. The reliability, flexibility and low computational cost
of a data simulation process may ultimately allow researchers
to train, tune and test different techniques in a variety of acous-
tic scenarios, avoiding the laborious effort of directly recording
real data from the targeted environment.

In the last decade, several simulated corpora have been re-
leased to the research community, including the data-sets dis-
tributed in the context of projects and international challenges,
such as CHiME and REVERB. These efforts were extremely
useful to derive baselines and common evaluation frameworks
for comparison purposes. At the same time, in many cases they
highlighted the need of a better coherence between real and sim-
ulated conditions.

In this paper, we examine this issue and we describe our
approach to the generation of realistic corpora in a domes-
tic context. Experimental validation, conducted in a multi-
microphone scenario, shows that a comparable performance
trend can be observed with both real and simulated data across
different recognition frameworks, acoustic models, as well as
multi-microphone processing techniques.
Index Terms: distant speech recognition, simulated data, real
data, multi-microphone speech corpora.

1. Introduction
Distant Speech Recognition (DSR) represents a fundamental
technology towards natural human-machine interfaces. Despite
the recent substantial progress in various related fields, includ-
ing spatial filtering [1, 2], microphone selection [3], source
separation [4], speech dereverberation [5], speaker localization
[6], acoustic event detection [7] as well as acoustic modeling
[8, 9, 10, 11, 12], DSR still exhibits a lack of robustness, es-
pecially when adverse acoustic conditions originated by non-
stationary noises and acoustic reverberation are met [13].

The availability of realistic simulated corpora and, more im-
portantly, the definition of common methodologies, algorithms
and good practices to generate simulated data plays a crucial
role for fostering future research in this field and will eventu-
ally help researchers to better migrate laboratory results into
real application scenarios. Approaches as contaminated speech
training [14, 15, 16], multi-style training [17, 18, 19] and data
augmentation [20, 21, 22, 23] have, in fact, been shown very
effective in improving the DSR system performance.

During the last decade, some simulated corpora have been
made available to the research community under projects or in-
ternational challenges. Valuable examples are the corpora re-
leased under the ChiME [24, 25] and REVERB [26] challenges,

which have contributed to define common tasks, baselines and
evaluation frameworks across researchers. Other simulated cor-
pora have been released under the CHIL project [27] and, more
recently, under the EU DIRHA project [28, 29, 6, 30, 31].
These efforts were extremely important to stimulate research
in the DSR field, but in several cases they also pointed out
the need of a better coherence between real and simulated data
performance. In [25], for instance, the authors state that “The
[CHiME3] challenge has drawn attention to the value of simu-
lated training data, but highlighted the need for better simula-
tion algorithm. It has also demonstrated that caution is needed
when interpreting results of challenges that use simulated data
evaluation.”. We fully agree with this statement, as our past
experience confirms that prudence is needed when using simu-
lated data. This caution is often to be attributed to very subtle
differences that may characterize the process of simulation as,
for instance, the accuracy and the realism of impulse responses.

The main purpose of this paper is to investigate on the level
of agreement in performance trend, that can be obtained with
real and simulated signals. A major focus of our work is on
reverberation, rather than background noise. Simulations are
based on the contamination method described in [15]. Each
impulse response (IR) is measured according to the procedure
described in [32], while simulated IRs are derived by a modified
version of the image method [33], which was experimented in
our past works. This modified version differs from the original
[33] just for simulating also the directivity pattern of the source,
besides sound propagation effects. The experiments, conducted
in a new multi-microphone domestic scenario that was devel-
oped under DIRHA, demonstrate a good level of agreement in
performance, evident with all the investigated acoustic models
and processing. We also show the improvement that can be
obtained when measured IRs, instead of image-method based
ones, are used to train acoustic models.

The paper is organized as follows: Sec. 2 outlines the data
simulation approach; Sec. 3 describes the adopted experimental
setup, while Sec. 4 reports on the experimental validation of the
methodology. Finally, Sec. 5 will draw some conclusions and
provide an outlook on future work.

2. Data Simulation
In this work, the data simulation process is achieved according
to the following equation:

y(t) = x(t) ∗ h(t) + n(t) (1)

where y(t) is the simulated distant-talking signal, x(t) is the
close-talking speech, h(t) is the impulse response of the acous-
tic environment for a given source and microphone position, ∗
is the convolution operator, and n(t) is an additive background
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noise. Several important aspects must be considered for an ef-
fective simulation, as discussed in the following.

2.1. Close-Talking Recordings

Our experience in data simulation suggests that the availabil-
ity of a high-quality close-talking data set is crucial for gen-
erating realistic distant-talking simulated data. Particular atten-
tion should be directed to ensuring dry and noiseless recordings,
since the possible presence of noise sources, saturation, rever-
beration effects due to the room acoustic as well as distance be-
tween speaker and microphone can produce artifacts in the later
simulation process. The quality and the characteristics of the
microphone can also influence the realism of the simulations.

In the context of the DIRHA project, high quality close-
talking speech signals have been acquired under extremely quiet
conditions (with a SNR of at least 50-60 dB for each sentence),
in an acoustically treated recording room, using a high-quality
microphone (Neumann TLM 103) and a professional audio card
(RME Octamic II).

2.2. Impulse Response

The impulse response is the most representative feature char-
acterizing an acoustic space. In the assumption of linear time-
invariant reverberant rooms, IRs provide a complete description
of the changes a sound signal undergoes when traveling from
one point in space to another [34]. The impulse response can be
either measured in the targeted environment or geometrically
inferred by simulations.

Several techniques have been proposed in the last decade
for measuring the IR of an acoustic enclosure, including solu-
tions based on Maximum Length Sequence (MLS) [35], Linear
Chirps [36], or Exponential Sine Sweeps (ESS) [36]. In [32], a
comparison between these different methods has been proposed
for distant speech recognition purposes, showing that ESS out-
performs the other methods, especially when long (1 minute)
and high dynamic excitation signals can be emitted in the acous-
tic environment. This result is due to a better management of the
harmonic distortions introduced by the loudspeaker as well as
to a more favorable SNR. That study also revealed that using a
professional loudspeaker for exciting the acoustic environment
(e.g., a professional Genelec 8030) leads to a much more real-
istic impulse response measurement, if compared to what ob-
tained with a cheaper loudspeaker. Following these guidelines,
an IR measurement campaign has been conducted in the context
of the DIRHA project to acoustically characterize a real apart-
ment equipped with a network of microphones. As discussed in
[28], about 9000 IRs were estimated.

Synthetic room impulse responses can be generated by the
well-known Image-source Method (IM) [33], based on a geo-
metric model accounting for room size, source and microphone
positions, and ideal propagation/reflection paths within the en-
closure. The baseline method only considers attenuation and
(approximated) time instants of arrival of reflections, which re-
sults in quite unrealistic IRs. Several improvements have been
proposed in order to achieve IRs with characteristics that bet-
ter match with those measured in real environments [37, 38].
In this work, for instance, a modified version of the standard
algorithm allowing us to simulate directive sources is consid-
ered. This version has shown to be effective to generate IRs
better reflecting real-world conditions. However, such simpli-
fied propagation models, assuming an empty shoebox geometry,
cannot reproduce the complex patterns of sound propagation in
real rooms, as will be shown in Sec.4.5.
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Figure 1: An outline of two rooms of the DIRHA apartment
considered for this study. Small blue dots represent digital
MEMS microphones, red ones refer to the channels considered
for the following experimental activity, while black ones repre-
sent the other available microphones. The right pictures show
the ceiling array and the two linear harmonic arrays installed in
the living-room.

3. Experimental Setup
This section describes the microphone setup, the task, the cor-
pora as well as the speech recognition framework considered in
this work.

3.1. Multi-microphone Setup

The apartment used in the DIRHA project is equipped with
high-quality omnidirectional microphones (Shure MX391/O),
connected to multichannel clocked pre-amp and A/D boards
(RME Octamic II), which provide a synchronous sampling at
48 kHz, with 24 bit resolution. The living-room and the kitchen
comprise the largest concentration of sensors and devices. As
shown in Fig. 1, the living-room includes three microphone
pairs, a microphone triplet, two 6-microphone ceiling arrays
(one consisting of MEMS digital microphones), two harmonic
arrays (consisting of 15 electret microphones and 15 MEMS
digital microphones, respectively). The experiments in this
work refer to the use of the five microphones depicted in red
in Fig.1. The reverberation time T60 of the considered room is
about 0.75 seconds, which indicates that the acoustic character-
istics are quite challenging for DSR studies.

3.2. Task and corpora

The task considered in this work is the Wall Street Journal
(WSJ-5k), in agreement with the task addressed in the CHiME
3 challenge. While CHiME 3 was pretty focused on robust-
ness against noise, in this work the main source of disturbance
is reverberation. For testing purposes we employed both real
and simulated data, which are derived from recordings in the
DIRHA apartment. Real data were collected from four native
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Data Type Single Distant Microphone Delay-and-Sum Beamforming Oracle Microphone Selection

Real Data Sim Data Real Data Sim Data Real Data Sim Data
Mono 62.2 64.7 56.8 58.8 49.6 51.9
Tri1 39.8 41.1 33.9 34.9 28.0 29.2
Tri2 33.0 33.6 28.4 29.1 22.6 23.2
Tri3 21.5 22.3 18.0 19.1 13.6 14.9
Tri4 19.9 21.4 17.5 17.4 12.6 13.8
DNN 12.0 13.2 10.7 11.6 7.2 7.6

Table 1: WER(%) obtained in a distant-talking scenario with real and simulated data across different acoustic models and microphone
processing.

US English speakers (two females and two males) uttering a to-
tal of 272 WSJ sentences in different positions of the apartment.
In particular, each subject was positioned in the living-room and
read the material from a tablet, standing still or sitting on a chair,
in a given position. After a set of 10-12 sentences, she/he was
asked to move to a different position and take a different ori-
entation. In order to allow a fair comparison between real and
simulated data, we asked the same speakers to utter the same
sentences in our recording studio, using the acquisition set-up
described in Sec.2.1. Moreover, for each position/orientation of
the speaker in the real recording, a corresponding IR was mea-
sured, allowing us to derive a simulated corpus well-matching
with the speaker positions used for the real data. The train-
ing phase is based on the WSJ0 database (LDC catalog num-
ber LDC93S6A), which was contaminated with an impulse re-
sponse measured in a position different from those used for test-
ing purposes.

3.3. ASR framework

The experimental part of this work is based on the Kaldi toolkit
[39]. The recipe considered for training and testing the DSR
system is similar to the s5 recipe proposed in the Kaldi re-
lease for WSJ data. In short, the speech recognizer is based
on standard MFCCs and acoustic models of increasing com-
plexity. “Mono” is the simplest system based on 48 context-
independent phones of the English language, each modeled by
a three state left-to-right HMM (overall using 1000 gaussians).
A set of context-dependent models are then derived. In “tri1”
2.5k tied states with 15k gaussians are trained by exploiting
a binary regression tree.“Tri2”is an evolution of the standard
context-dependent model in which a Linear Discriminant Anal-
ysis (LDA) is applied. In both ‘‘tri3” and “tri4” models Speaker
Adaptive Training (SAT) is also performed. The difference is
that “tri4” is bootstrapped by the previously computed ‘‘tri3”
model. The considered “DNN”, based on the Karel’s recipe, is
composed of 6 hidden layers of 2048 neurons, with a context
window of 19 consecutive frames (9 before and 9 after the cur-
rent frame) and an initial learning rate of 0.008. The weights
are initialized via RBM pre-training, while the fine tuning is
performed with stochastic gradient descent optimizing cross-
entropy loss function.

4. Results
This section provides some speech recognition results, with the
purpose of validating the proposed data simulation approach. In
the following sub-section, a close-talking baseline is provided,
while in subsections 4.2, 4.3 and 4.4 distant-talking experiments
with single microphone, beamforming on the ceiling array, and
oracle microphone selection are respectively presented.
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Figure 2: Graphical representation of the performance trends
reported in Table 1.

4.1. Close-talking baseline

The Word Error Rate (WER%) obtained by decoding the close-
talking WSJ sentences recorded in the recording studio is 3.7%
(using DNN models trained with the original clean WSJ data
set). It is worth nothing that, under such favorable acoustic
conditions, the DNN model leads to a very accurate sentence
transcription. For reference purposes, the average WER with
close-talking signals recorded in the DIRHA apartment is about
5%.

4.2. Single distant-microphone performance

The results reported in the first column of Table 1 show the per-
formance obtained when a single distant microphone (i.e., the
“LA6” ceiling microphone depicted in Fig. 1) is considered.
Results clearly highlight that in the case of distant-speech input
the ASR performance is dramatically reduced, if compared to a
close-talking case. The use of robust DNN models trained with
contaminated speech material leads, as expected, to a substan-
tial improvement of the WER when compared to other GMM-
based systems. The most interesting result, however, is that a
similar performance trend is obtained for both real and simu-
lated data over different acoustic models. This trend can also be
appreciated by comparing the continuous (real data) and dashed
(sim data) blue lines of Fig. 2. In particular, the average rela-
tive WER distance between such data-sets computed over the
considered acoustic models is about 6%. We believe that this is
a significant result, especially if one considers that part of this
variability can be attributed, despite our best efforts for align-
ing simulated and real data, to the fact that in the two recording
sessions speakers inevitably uttered the same sentence in a dif-
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Figure 3: Comparison between real and simulated data with
contaminated training performed with a measured IR.

Figure 4: Comparison between real and simulated data with
contaminated training performed with an image method IR.

ferent way.

4.3. Delay-and-sum beamforming performance

The simulation methodology described in Sec. 2, can be ex-
tended in a very straightforward way to a multi-microphone
scenario. It would be thus of crucial importance to ensure that
the similar trend between real and simulated data achieved with
a single microphone is preserved even when multi-microphone
processing is applied to the data. Here a standard delay-and-
sum beamforming, based on source-microphone delays com-
puted with the GCC-PHAT algorithm [40], is applied to the six
microphones of the ceiling array of Fig. 1. Table 1 and Fig.
2 show that beamforming is helpful in improving the system
performance. One can also note that, as hoped, a similar per-
formance trend between the data-sets is reached when applying
beamforming. For instance, in the case of real data coupled with
DNN acoustic models, delay-and-sum beamforming leads to a
relative improvement of about 12% over the single microphone
case, which is similar to the improvement of 13% obtained with
the simulated data.

4.4. Oracle microphone selection performance

To further confirm the result achieved in the previous sections,
an oracle microphone selection is applied to both real and simu-
lated data. An oracle microphone selection is performed by se-
lecting, for each sentence uttered by the speaker, the best WER
from the five signals acquired by the red microphones in Fig.
1. Table 1 and Fig. 2, confirm that the consistency between
real and simulated data is largely preserved. The experimental
results also show that an optimal microphone selection would
be particularly helpful for improving the DSR performance. A
proper channel selection has a great potential even when com-
pared with a microphone combination based on delay-and-sum
beamforming. For instance, in the case of real data with DNN
acoustic models, a WER of 7.2% is obtained with an oracle
channel selection against a WER of 10.7% achieved with beam-
forming.

4.5. Measured vs Geometric Modeling of IRs

In this section we compare the simulations based on mea-
sured IRs, so far considered, with simulations derived by im-
age method-based IRs. For the latter case, the geometry of
the targeted living room, the spatial coordinates of microphones

and speakers, as well as the reverberation time T60 of 0.75s are
imposed to the IM algorithm. As outlined in Sec. 2.2, a cer-
tain source spatial directivity similar to that exhibited by a real
speaker, is considered. Fig. 3 and Fig. 4 show the perfor-
mance observed using two different training strategies. In par-
ticular, Fig. 3 reports the trend obtained when the training set is
contaminated with an impulse response measured in the target
environment, while Fig. 4 presents the results obtained when
using an image method-based IR. Results confirm that, in both
matching and mismatching conditions, simulated data obtained
with measured IRs exhibit a trend very similar to that observed
with real data. For instance, in the case of DNN, performance
with Real, Sim-Measured IRs, and Image Method, are 12.0%,
13.2%, and 15.3%, respectively. On the other hand, despite our
best efforts for increasing the realism of image method-based
IRs, the performance with such simulation approach is still un-
satisfactory. In particular, in the case of DNN the relative per-
formance loss using image-method based IRs, instead of mea-
sured IRs, for contaminated training is 36% (i.e., from 12% to
16.3%).

5. Conclusion
In this paper we discussed our best practices to generate re-
alistic multi-microphone data for training and testing distant-
speech recognition systems. Our approach has been validated
by comparing real data with simulated data obtained by con-
volving close-talking dry speech sequences with impulse re-
sponses measured in a domestic environment. The experimen-
tal results show that a very similar performance trend can be
obtained between real and simulated data over different ex-
perimental conditions, involving different acoustic models and
multi-microphone processing techniques. This study also re-
vealed that data simulation based on IRs measured in the tar-
geted environment ensures much better results than those ob-
tained with an IR simulator based on Image method. However,
in the perspective of a real application, measuring every time
the IRs can be unpractical. The results reported in this paper are
thus just a starting point towards a future work, which will study
more in depth how the gap between measured and synthetic IRs
can be reduced. An ideal solution would be to automatically
analyze the recorded speech and to drive an unsupervised adap-
tation of initial IRs possibly generated by simulation.
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[13] E. Hänsler and G. Schmidt, Speech and Audio Processing in Ad-
verse Environments. Springer, 2008.

[14] M. Ravanelli and M. Omologo, “Contaminated speech training
methods for robust DNN-HMM distant speech recognition,” in
Proc. of INTERSPEECH 2015, pp. 756–760.

[15] M. Matassoni, M. Omologo, D. Giuliani, and P. Svaizer, “Hid-
den Markov model training with contaminated speech material
for distant-talking speech recognition.” Computer Speech & Lan-
guage, vol. 16, no. 2, pp. 205–223, 2002.

[16] M. Ravanelli and M. Omologo, “On the selection of the impulse
responses for distant-speech recognition based on contaminated
speech training,” in Proc. of INTERSPEECH 2014, pp. 1028–
1032.

[17] A. Sehr, C. Hofmann, R. Maas, and W. Kellermann, “Multi-
style training of HMMS with stereo data for reverberation-robust
speech recognition,” in Proc. of HSCMA 2011, pp. 196–200.

[18] L. Couvreur, C. Couvreur, and C. Ris, “A corpus-based approach
for robust ASR in reverberant environments.” in Proc. of INTER-
SPEECH 2000, pp. 397–400.
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