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Abstract
It has been shown that the multi-channel linear prediction
(MCLP) can achieve blind speech dereverberation effectively.
However, it always degrades the binaural cues which are ex-
ploited for human sound localization, i.e., interaural time dif-
ferences (ITD) and interaural level differences (ILD). To over-
come this problem, the multiple input-single output structure
of conventional MCLP is modified to a binaural input-output
structure for suppressing reverberation and preserving binaural
cues simultaneously. First, by employing a binaural coherence
model with head shadowing effects, the variance of desired sig-
nal can be estimated the same to both ears, which can ensure
no modification of ILD. Then, the variance is utilized to calcu-
late the prediction coefficients in a maximum-likelihood (ML)
sense. Finally, the desired signals can be obtained as the predic-
tion errors in MCLP. And since the algorithm does not disturb
the phase of input signal, the ITD cue is kept. Evaluations with
measured binaural room impulse responses (BRIRs) show that
the proposed method yields a good performance on both speech
dereverberation and binaural cues preservation.
Index Terms: binaural dereverbaration, binaural cues, coher-
ence, head shadowing, multi-channel linear prediction

1. Introduction
In an enclosed space, reverberation always decreases the speech
quality and intelligibility, because of the reflections from the
walls, floors, ceilings or furniture, especially in applications of
hands-free devices, hearing aids, teleconferencing, sound lo-
calization, automatic speech recognition (ASR), etc [1]. Many
methods have been proposed for single- and multi- microphone
dereverberation, which can be broadly classified into three cat-
egories [2], inverse filtering [3], spectral enhancement [4] and
probabilistic model-based approach [5,6]. The significant draw-
back is that most of these dereverberation methods are sin-
gle/multiple input-single output techniques or independent bi-
lateral signal processing, which means performing monaural
enhancement on each side of the device without taking the s-
patial information into account [7]. Hence, the binaural cues,
particularly interaural time differences (ITD) and interaural lev-
el differences (ILD), are severely degraded, which are exploited
by human auditory system for the ability of sound localization
[8,9]. It is well known that the spatial perception can be used to
increase the speech intelligibility [10, 11]. The fact motivates
the dereverberation with preserving binaural cues. Recently,
the dereverberation methods with binaural cues preservation are
suggested in [7, 12, 13], which are based on the multichannel
wiener filter (MWF) [7, 12] and Kalman-EM scheme [13].

An efficient blind dereverberation method based on multi-

channel linear prediction (MCLP) in the short-time Fourier
transform (STFT) domain was proposed in [5]. It is assumed
that the late reverberation can be predicted from the previous
frames of the reverberant signal, unknown parameters of the
prediction filter and time-varying Gaussian (TVG) model can
be estimated by using the maximum-likelihood (ML) rule [14].
Several works have been recently presented based on MCLP for
improving the dereverberation performance [2, 15–17], such as
adding sparse priors to the desired signal [2, 15]. But there is
a problem that these methods are focusing on the amount of
dereverberation only, without considering about the effects on
binaural cues and hence, the spatial information is disturbed.
Therefore, we propose a method based on MCLP aiming at en-
abling a tradeoff between the dereverbaration performance and
the preservation of the binaural cues. As the early reverberation
is often beneficial to the spatial awareness [1], we only focus on
the suppression of the late reverberation here.

In this paper, a binaural dereverberation method based on
MCLP is proposed. First, a modified binaural input-output
structure is employed to make a data-link between two ears and
take the original spatial information into account. Then, a bin-
aural coherence model with head shadowing effects is used to
calculate the auto-power spectral density (APSD) of the esti-
mated desired signal in each iteration, which is then applied to
estimate its variance. In this way, the prediction coefficients on
each ear can be calculated with the same value of the desired
signal variance, which can keep the ILD greatly. And the dere-
verberation algorithm we used does not disturb the phase of the
input signal with the overlap-add, hence the ITD cue can be
kept. By doing so, the effects of reverberation can be reduced
without affecting the impression on the sound scene for human.

2. MCLP-based dereverberation
Suppose a scenario in an enclosure where there is a single
speech source captured by M microphones, M/2 microphones
on each side of a head. Let s(n, k) be the source signal in
the short-time Fourier transform (STFT) domain with frequen-
cy bin index k ∈ {1, . . . ,K} and time index n ∈ {1, . . . , N}.
The STFT coefficients of the observed signal at the m-th mi-
crophone on the left or right ear can be represented as [14]:

xj,m(n, k) =

Lh−1∑
L=0

hj,m(L, k)s(n−L, k) + ej,m(n, k), (1)

where j ∈ {l, r} represents the signals corresponding to the left
or right ear, hj,m(n, k) is the room impulse response (RIR) of
lengthLh between the speech source and them-thmicrophone,
ej,m(n, k) denotes the additive noise and modeling errors of the
RIR convolution. As in [16], by assuming em(n, k) = 0, the
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observed signal at a chosen reference microphone (e.g.,m = 1)
can be expressed in the multi-channel linear prediction form as:

xj,1(n, k) =

M/2∑
m=1

Lc−1∑
L=0

(
cl,m(L, k)x

′
l,m(n− τ − L, k) +

cr,m(L, k)x
′
r,m(n− τ − L, k)

)
+ dj(n, k), j ∈ {l, r},

(2)
where cj,m are the coefficients of the prediction filter with the
length ofLc, x

′
j,m denotes the time-aligned signal performed by

means of the generalized cross-correlation with phase transform
(GCC-PHAT) [18]. The first term in Eq. (2) is the late rever-
beration, which is predicted from the past observed signals with
cj,m. The second term dj(n, k)=

∑τ−1
L=0 hj,1(L, k)s(n−L, k)

is the desired signal for each ear including the direct speech sig-
nal and early reflections with the prediction delay τ . The MCLP
in Eq. (2) can be written in vector form as:

xj,1(k) = Xτ (k)Cj(k) + dj(k), j ∈ {l, r}, (3)

with
Xτ (k) = [Xτ

l,1(k), . . . ,X
τ
l,M/2(k),X

τ
r,1(k), . . . ,X

τ
r,M/2(k)],

Cj(k) = [CT
l,1(k), . . . ,C

T
l,M/2(k),C

T
r,1(k), . . . ,C

T
r,M/2(k)]

T ,

dj(k) = [dj(1, k), . . . ,dj(N, k)]T ,

Xj,m(k) = [X̄j,m(1, k), . . . , X̄j,m(N, k)]T ,

Cj,m(k) = [cj,m(0, k), . . . , cj,m(Lc − 1, k)]T ,

X̄j,m(n, k) = [x
′
j,m(n, k), . . . , x

′
j,m(n− Lc + 1, k)]T ,

where j ∈ {l, r} and (·)T denotes non-conjugate transposition.
Here,Xτ

j,m(k)∈RN×Lc is constructed withXj,m(k) delayed
for τ frames. With the estimated prediction coefficients, the
desired speech signal can be estimated as follows:

d̂j(k) = xj,1(k)−Xτ (k)Ĉj(k), j ∈ {l, r}, (4)

where ( ·̂ ) denotes an estimated variable. Therefore, the desired
signal can be interpreted as the prediction error in MCLP [14].

In the speech dereverberation based on MCLP, the desired
signal is always modeled as a time-varying Gaussian (TVG)
model, which means that it is an independent zero-mean ran-
dom variable following a circular complex Gaussian distribu-
tion in each time-frequency bin [2,14–17]. The probability den-
sity function (PDF) of the desired signal is defined as:

P (dj(n, k)) = Nc(dj(n, k); 0, λj(n, k)), j ∈ {l, r}, (5)

where the variance λj(n, k) is an unknown and time-varying
parameter to be estimated.

Let λj(k) = [λj(1, k), . . . , λj(N, k)]T , the likelihood
function for the k-th frequency bin can be derived as:

L(Cj(k),λj(k)) = P (dj(k)) =

N∏
n=1

P (dj(n, k)), j ∈ {l, r}.

(6)
The unknown parametersCj(k) andλj(k) can be estimated by
maximizing Eq. (6), i.e., by minimizing the following negative
log likelihood function withDλj(k) = diag(λj(k)) as:

min
Cj(k),λj(k)

dHj (k)D−1
λj(k)

dj(k)+

N∑
n=1

logπλj(n, k), j ∈ {l, r}.

(7)
Then, an alternating optimization procedure is used to recover
the desired signal as in [15]. And the solution of the vector
λj(k) is that λ̂j(k) = |d̂j(k)|2.

3. Dereverberation with binaural coherence
In this section, the proposed binaural cues-preserved derever-
beration method is introduced. To preserve ILD, a binaural
coherence model with head shadowing effects is used to esti-
mate the variance of the desired signal, which is different from
the conventional MCLP. Since the algorithm is processed after
time-alignment, the dereverberation performance can be robust
over the entire azimuth range. And as the signal is reconstructed
by using overlap-add with the phase information of the original
signal, the ITD can be unaffected. The schematic diagram of
our method is depicted in Fig. 1.

Figure 1: Block diagram of the proposed method

3.1. Estimation of λj(n, k)

In the conventional MCLP, the variances of the desired signal on
each ear are estimated independently in a bilateral configuration
as λ̂j(k) = |d̂j(k)|2, without considering about the effects on
the binaural cues. In our approach, a binaural coherence model
is applied to estimate λj(n, k), which ensures the same variance
of the desired signal on both ears, and hence, the ILD cue can
be kept. The coherence function between two signals z1 and z2

can be defined as [19]:

Γz1z2 =
Φz1z2√

Φz1z1 ·Φz2z2
, (8)

where Φz1z1 and Φz2z2 represent the APSDs of z1 and z2 re-
spectively, and Φz1z2 is the cross-power spectral density (CPS-
D) between z1 and z2. Here, the reverberant room is approx-
imated by a 3D diffuse noise field [20]. And because of the
object in the line-of-sight, the coherence with head shadowing
effects on the input signals to both ears is approximated as [7]:

Γ̂
head

z1z2(f) =

P∑
p=1

ap · exp(−f − bp
cp

)2, (9)

where f is the frequency. The model order P is set to 3, and
the constants ap, bp and cp are set the same as in [7]. Then,
the variance is estimated by using the APSD [19] of the esti-
mated desired signal (obtained from last iteration). Here, we let
Φ̂(n, k) = Φ̂

d̂
(i)
l
d̂
(i)
l

(n, k) + Φ̂
d̂
(i)
r d̂

(i)
r

(n, k), the variance of

the desired signal can be defined in the following as:

λ̂(i)(n, k) = Φ̂d̂d̂(n, k) =

Re{Φ̂
d̂
(i)
l
d̂
(i)
r

(n, k)} − 1
2
Re{Γ̂

head

d̂ld̂r (f)}Φ̂(n, k)

1−Re{Γ̂
head

d̂ld̂r (f)}
,

(10)

where the function Re{·} returns the real part of its argument
and (·)(i) denotes the iterating value at the i-th iteration. Since
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Algorithm 1: Outline of the proposed algorithm. ‖ x ‖∞
denotes the maximum absolute value of the elements in x

Parameters: Lc and τ in (2)
Input: xj,m(k), ∀j,m, k
Output: dj(k), ∀j, k
Initialization: d̂

(0)

j (k) = xj,1(k)/Aj with
Aj =‖ xj,1(k) ‖∞

1: time-aligned with GCC
2: for k = 1, . . . ,K do
3: calculateXτ (k)
4: for i = 0, . . . , imax do
5: λ̂

(i)
j (n, k)←max{Φ̂d̂d̂(n, k), ε},

calculate Φ̂d̂d̂(n, k) as in (10)

6: Ĉ
(i+1)

j (k)← calculate as in (13)

7: d̂
(i+1)

j (k)← xj,1(k)−Xτ (k)Ĉ
(i+1)

j (k)
8: end for
9: d̂j(k) = Aj d̂j(k)

10: end for
11: return dj(k)

the APSD of the signal may not be negative or singular, the
maximum threshold Γmax for the coherence function to ensure
that 1−Re{Γ̂

head

d̂ld̂r (f)} > 0 is set to 0.99. The estimation
of Φdjdj (n, k) and Φdldr (n, k) are performed by a recursive
periodogram approach with smoothing factor 0 ≤ α ≤ 1 as:

Φ̂
d̂
(i)
j d̂

(i)
j

(n, k) =αΦ̂
d̂
(i)
j d̂

(i)
j

(n− 1, k)+

(1− α)|d̂(i)j (n, k)|2, j ∈ {l, r},
(11)

Φ̂
d̂
(i)
l
d̂
(i)
r

(n, k) =αΦ̂
d̂
(i)
l
d̂
(i)
r

(n− 1, k)+

(1− α)d̂
(i)
l (n, k) · d̂(i)∗r (n, k),

(12)

where ∗ denotes the complex conjugate.

3.2. Binaural output

With the same variance of the desired signal for each ear in E-
q. (10), the important ILD cue can be preserved in the binaural
dereverberation structure. By using the ML rule and alternating
optimization procedure, which has been mentioned in Section 2,
the prediction coefficients and desired signals can be calculated.
In the alternating optimization procedure, firstly, assuming the
variances of the desired signal λ̂(k) are fixed to the values from
the i-th iteration, the optimization problem of prediction vector

Ĉ
(i+1)

j (k) can be obtained by minimizing Eq. (7). Secondly,

with the estimated value of Ĉ
(i+1)

j (k) from the first step and ac-

cording to Eq. (4), the desired signal d̂
(i+1)

j (k) can be obtained.
Then, update λ̂(k) with Eq. (10). After the i-th iteration, the
element-wise solution can be given as:

Ĉ
(i+1)

j (k) =
(

(Xτ (k))HD−1

λ̂
(i)

(k)
Xτ (k)

)−1

(Xτ (k))HD−1

λ̂
(i)

(k)
xj,1(k), j ∈ {l, r},

(13)

d̂
(i+1)

j (k) = xj,1(k)−Xτ (k)Ĉ
(i+1)

j (k), j ∈ {l, r}, (14)

with the complex conjugate transposition (·)H . The iterating
procedure is repeated at a maximum number or until covergence
with the initialization as d̂(0)j (n, k) = xj,1(n, k).

The dereverberation scheme based on MCLP with binau-
ral cues preservation is summarized in Algorithm 1. Note that
for each frequency bin k, the matrix Xτ

j (k), j ∈ {l, r} is nor-
malized with the maximum magnitude of the STFT coefficients
of the reference microphone signal xj,1. Also, our method
can be applied to MCLP with sparse priors in [2], i.e., first,
modifying the MCLP model to the binaural input-output struc-
ture. Then, the variance of the desired signal is estimated as(
λ̂(i)(n, k)

)2−δ
with the shape parameter δ (0 ≤ δ ≤ 2) of the

complex generalized Gaussian (CGG) prior, and λ̂(i)(n, k) is
calculated by using our approach in Eq. (10). And this method
will be compared with other three approaches in our experi-
ments in Section 4.

4. Experiments and analysis
To test the performance of our approach, experiments are car-
ried out with four different binaural room impulse responses
(BRIRs) from the Aachen Impulse Response (AIR) database
[21]. The selected BRIRs are measured with a dummy head
(one microphone on each ear, i.e., M=2) in different reverber-
ant environments at a microphone distance 0.17 m. Reverber-
ation time RT60, louder speaker-microphone distance Dist.,
azimuth angle θ between head and loudspeaker of the BRIRs
are shown in Table 1. The evaluation is performed by using
80 utterances of 10 male and 10 female (4 utterances for each
speaker) from the TIMIT database [22], which are convolved
with BRIRs to generate the reverberant speech signals. The av-
erage length of an utterance is approximately 3.8 sec.

Table 1: Properties of the different rooms

Room Dist. RT60 θ
Office Room 1m 0.45s 90◦ (frontal)
Lecture Room 7.1m 0.85s 90◦

Stairway Hall 2m 0.83s 0◦, 15◦, . . . , 90◦

Aula Carolina 5m 5.16s 90◦

Four different methods are compared here. The convention-
al bilateral MCLP (labeled as MCLP) [5], in which the predic-
tion coefficients and the variances of the desired signals on t-
wo ears are calculated independently without any data-link, the
variances λ̂j(k) are estimated as λ̂j(k) = |d̂j(k)|2, and the
Xτ (k) in (3) (4) (13) (14) is represented byXτ

j (k), j ∈ {l, r}.
The conventional MCLP with CGG sparse prior (labeled as
MCLP-SP) [2]. Our method, i.e., calculating the variance of
the desired signal using Eq. (10) in a binaural structure (la-
beled as MCLP-COH). And our method with CGG, which has
been mentioned in Section 3.2 (labeled as MCLP-SPCOH). In
the experiments, the sampling frequency is 16kHz, the STFT is
calculated using a Hann window with the frame length of 256
and 50% overlap. The length of the prediction filter is set to
Lc = 10, the prediction delay τ = 2, and ε = 10−8. And
the shape parameter in MCLP-SP and MCLP-SPCOH is set
to δ = 0.5. Note that the maximum number of the iteration
imax is set to 1 for MCLP, MCLP-COH and 10 for MCLP-SP,
MCLP-SPCOH. Because in MCLP or MCLP-COH, the vari-
ance is updated with no spectral priors, the results indicate that
the quality often degrades in the following iterations, the same
as is mentioned in [15].

The performance is evaluated in terms of a non-intrusive
measurement speech to reverberant modulation energy ratio (S-
RMR) [23], an intrusive measurement cepstral distance (CD)
[24], ITD and ILD. In the following, the results are the improve-
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Figure 2: Results for different reverberant environments.
∆SRMR and ∆CD are the averaged results between the left
and right signal. Note that for MCLP and MCLP-SP, ITD and
ILD are calculated in a bilateral structure.

ments of the measurements, i.e., ∆I = Iderev − Irev , ∆Q =
|Qderev − Qrev|, with I ∈ {SRMR, CD}, Q ∈ {ITD, ILD},
(·)derev and (·)rev are the evaluations on dereverberated signals
and original speech signals, respectively. Here, ITD is evaluat-
ed by GCC-PHAT [18], and ILD is simply calculated by the
energy ratio as 10 log10( El

Er
), where El and Er are the energy

of the left and right signal respectively. The results (averaged
over all utterances) are shown in Fig. 2.

It can be observed in Fig. 2 that for all experiments, the
reverberation is suppressed in terms of ∆SRMR. Comparing
∆ITD and ∆ILD of MCLP with MCLP-COH, MCLP-SP with
MCLP-SPCOH, the binaural cues can be preserved distinctly
by using our method. Since the variance of the desired signal is
estimated to be the same on each ear in our binaural structure,
the ILD cue is not modified. There is an exception that it seems
that the ITD is preserved slightly better with MCLP-COH than
MCLP-SPCOH. But in theory, they should be the same as the
phases of original signals are kept. It is due to the signal distor-
tion and the remaining reverberation in the signals, which will
be improved in our future work.

Comparing the ∆SRMR in four different reverberant envi-
ronments in Fig. 2, it can be seen that the SRMR values are
improved more in the lecture room and the stairway hall than in
the office room. It is because the selected BRIRs of the lecture
room and the stairway hall are with longer RT60 than the of-
fice room, the more reverberant the room, the more amount of
dereverberation can be obtained. The results also show a good
enhancement performance on the Aula-Carolina BRIR, which
is an extreme case here with RT60 = 5.16s. It indicates the
robustness of the proposed method in highly reverberant envi-
ronment. However, by preserving the binaural cues, the dere-
verberation performance degrades slightly as expected in some
cases in terms of ∆SRMR, such as in the lecture room and the
stairway hall. It is caused by the accumulated errors of the ap-
proximation of the binaural coherence model and the estimation
of the APSDs for calculating the variance of the desired signal.
Besides, the CDs can be reduced effectively. And the ∆CDs of

MCLP and MCLP-COH (or MCLP-SP and MCLP-SPCOH) are
similar, which means our method does not cause more distor-
tions compared to the conventional method. Note that the dere-
verberation and binaural cues preservation performance will be
better with M ≥ 2, i.e., more than one microphone on each
ear. Because with the increase of the microphone number, more
original speech and spatial information can be captured.

Table 2: Comparison of ITD for different θ (azimuth angle) in
the stairway hall environment

θ 90◦ 60◦ 45◦ 30◦ 0◦

MCLP 0.0461 0.2763 0.3908 0.4739 0.5666
MCLP-COH 0.0492 0.3349 0.4414 0.5562 0.6641
MCLP-SP -0.0258 0.2423 0.3772 0.4494 0.5294
MCLP-SPCOH 0.0375 0.3215 0.4232 0.5045 0.6646
original 0.0625 0.375 0.50 0.5625 0.675

Table 3: Comparison of ILD for different θ (azimuth angle) in
the stairway hall environment

θ 90◦ 60◦ 45◦ 30◦ 0◦

MCLP -0.87 3.91 6.31 7.73 8.69
MCLP-COH -0.80 3.53 5.83 7.14 8.01
MCLP-SP -0.57 3.87 6.24 7.41 8.29
MCLP-SPCOH -0.70 3.56 5.76 6.98 7.69
original -0.71 3.3 5.29 6.29 6.87

The results of ITD and ILD for different azimuths in the
stairway hall environment can be found in Table 2 and Table
3 respectively. The results of other azimuths are not presented
here for the space limitation. The more closer the value is to
the original signal, the better performance it can be achieved
in preserving the binaural cues. Comparing the ITD or ILD of
MCLP with MCLP-COH, MCLP-SP with MCLP-SPCOH, the
binaural cues can be kept efficiently with our method. Also,
it can be seen that the lowest influence of the algorithms is at
θ = 90◦. Since the ITD or ILD is small in the frontal direction.

5. Conclusions
This work introduced a binaural dereverberation method based
on MCLP. By employing a binaural coherence model which has
taken the head shadowing effects into account, the parameter-
s of MCLP can be estimated without disturbing the ILD cue.
And by using the algorithm without affecting the phase of the
original signal in a binaural input-output structure, the ITD cue
can be kept. Experimental results have shown that the proposed
method can preserve the binaural cues while has little effec-
t on the dereverberation performance. As the experiments are
carried out focusing on the reverberation only, without adding
noise, it can be extended to speech enhancement in both rever-
berant and noisy environment in our future work.
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