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Abstract

To train a model for semantic slot filling, manually labeled data
in which each word is annotated with a semantic slot label is
necessary while manually preparing such data is costly. Start-
ing from a small amount of manually labeled data, we propose
a method to generate the labeled data with using the encoder-
decoder LSTM. We first train the encoder-decoder LSTM that
accepts and generates the same manually labeled data. Then,
to generate a wide variety of labeled data, we add perturbations
to the vector that encodes the manually labeled data and gen-
erate labeled data with the decoder LSTM based on the per-
turbated encoded vector. We also try to enhance the encoder-
decoder LSTM to generate the word sequences and their label
sequences separately to obtain new pairs of words and their la-
bels. Through the experiments with the standard ATIS slot fill-
ing task, by using the generated data, we obtained improvement
in slot filling accuracy over the strong baseline with the NN-
based slot filling model.

Index Terms: spoken language understanding, semantic slot
filling, labeled data generation, encoder-decoder LSTM, ATIS

1. Introduction

Semantic slot filling is an essential component of Spoken Lan-
guage Understanding (SLU) [1]. Slot filling can be framed as a
sequential labeling problem in which the most probable seman-
tic slot labels are estimated for each word of the given word
sequence. Slot filling is a traditional task and tremendous ef-
forts have been done, especially since the 1980s when the De-
fense Advanced Research Program Agency (DARPA) Airline
Travel Information System (ATIS) projects started [2]. In the
1990s, the dominant methods were rule-based approaches [3]
and statistical approaches [4]. In the early 2000s, discrimina-
tive training was leveraged for slot filling and Conditional Ran-
dom Fields (CRF) particularly performed well [5] since CRF
can explicitly model label dependencies. Following the suc-
cess of deep learning [6, 7], many researchers have been ap-
plying deep learning for slot filling. Recurrent Neural Network
(RNN) [8, 9] and one of its specific architectures, Long Short-
Term Memory (LSTM) [10], have been widely used since they
can capture temporal dependencies through their recurrent hid-
den states [11, 12, 13].

To train recently proposed models for slot filling, large
amount of labeled training data is necessary. Figure 1 is an ex-
ample of labeled data in the ATIS corpus. However, since man-
ually labeling data is costly and time-consuming, the amount of
the manually labeled data is limited. After the SLU system is
publicly launched, real user input can be collected. By auto-
matically labeling these input with the model trained from the
existing labeled data, we can augment the training data. Instead,
in this paper, we focus on the very initial stage of the SLU sys-
tem deployment when only a small amount of manually labeled
data is available and unlabeled data is not available. We attempt
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Figure 1: Example of ATIS sentence and annotated slots labels.

to generate labeled data to augment the training data for the slot
filling model with using the manually labeled data.

There has been previous research to generate word se-
quences by training RNN [14] or LSTM [15] from the existing
text data. By enhancing this idea for labeled data generation,
[16] proposed a novel method to train RNN by using the pair of
word and its label as a unit of modeling, and generate sequences
of words and their labels. One shortcoming of this method is
that the generated sequences were not effective to improve the
competitive NN-based slot filling model in the ATIS domain.

In this paper, we propose to use the encoder-decoder
LSTM [17] to generate labeled data. The encoder-decoder
LSTM was originally proposed in machine translation and then
applied to grapheme-to-phoneme conversion [18], automatic
speech recognition [19, 20] and so on. The encoder LSTM
first encodes the input sequence into its last hidden state and
then the decoder LSTM generates the output sequence con-
ditioned on the encoded information. By using the manually
labeled training data, we first build the autoencoder with the
encoder-decoder LSTM [21] that uses the pair of word and its
label as a modeling unit. Then by feeding the training data to
the trained encoder-decoder LSTM, we generate the labeled se-
quences. Since the encoder-decoder LSTM is very powerful,
the sequences that are same with the input sequences are tend
to be re-constructed. However, our purpose is to generate sim-
ilar sequences and not to re-construct the original sequences.
To obtain a wide variety of sequences, we propose to add ran-
dom perturbation to the encoded vector when generating the
sequences as described in Figure 2. Another advantage of the
encoder-decoder is that various types of sequences and arbitrary
modeling units can be used as input and output. Starting from
a simple encoder-decoder LSTM that accepts pairs of word and
its label and also outputs the pairs, we tried various architec-
ture such as accepting sequences of pairs and generating word
and label sequences separately, as shown in Figure 3. By using
separate output sequences for words and labels, new pairs of
words and labels that are not included in the training data can
be generated.

We conducted experiments using the standard ATIS data
set and confirmed that the generated labeled data improved the
sufficiently competitive slot filling model.

The main contributions of this paper are three-folds:

* Proposed a method to generate labeled data using the
encoder-decoder LSTM with adding perturbation to the
encoded vector.

* Enhanced the encoder-decoder LSTM to generate word
and label sequences separately to obtain new pairs of
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Figure 2: Overview of proposed method. When training, the input sequence and the output sequence are identical and perturbation
is not added. When generating, perturbation is added to the hidden units and memory cells that encodes the input sequence, and the
output sequence different from the input sequence can be generated by the decoder LSTM.

word and label that were not in the training data.

* Confirmed that the generated data was effective to im-
prove slot filling model.

2. Encoder-decoder LSTM

We briefly revisit the LSTM architecture we use in this paper
and the encoder-decoder LSTM.

2.1. LSTM

LSTM is a specific architecture of RNN and is easier to train
thanks to its internal memory cells and gates. There are some
variants in LSTM architectures and we used the architecture
specified as below, which is similar to the architectures of
[15,22].

ir = tanh(Wyixe + Whihi—1 + b;)
je = sigm(Waae + Whihe—1 + ;)
fo = sigm(Wypzy + Whphi—1 + by)
or = sigm(Wyomt + Whohi—1 + bo)
. = 10 fr+it O

h: = tanh(c) ©® ot

x; is the input to the LSTM at time step ¢, W, are the weight
matrices, and b, are the bias vectors. © denotes an element-
wise product. c¢; and h; represent the memory cell vector and
the hidden vector at the time step ¢. Note that this LSTM does
not have peephole connections.

2.2. Encoder-decoder LSTM

The encoder-decoder LSTM is a general method to map the in-
put and the output sequences with arbitrary length [17, 23, 24].
It first encodes the input sequence into a fixed-sized vector using
one LSTM (encoder LSTM) and then generate the output se-
quence by decoding the encoded vector by another LSTM (de-
coder LSTM) whose hidden parameters are initialized with the
encoded vector by the encoder LSTM. The LSTM parameters
were optimized to maximize the log probability of the output
sequences given the input sequences. When generating the sen-
tences using the trained encoder-decoder LSTM, the most likely
output sequence given the input sequence is generated. We used
the simple left-to-right beam search decoder [17] when gener-
ating sequences.

3. Proposed Method

We explain our proposed method to generate the labeled data
with using the encoder-decoder LSTM as depicted in Figure
2. When training the encoder-decoder model, we use the same
labeled data in the training data for input and output. When
generating labeled data, we first encode the labeled data in the
training data by the encoder LSTM, add perturbation to the hid-
den vector and the memory cell, and then generate the labeled
data with the decoder LSTM. We detail our idea to generate a
wide variety of labeled data by adding perturbation and using
various architectures of encoder-decoder models.
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3.1. Perturbation to hidden vector and memory cell

While our purpose is to generate new labeled data, the encoder-
decoder LSTM tends to re-generate the output sequence that is
identical to the input sequence due to its novel modeling capa-
bility. We propose to add two types of perturbation, additive
and multiplicative perturbation, to the encoded information be-
fore generating sequences. More concretely, assuming that the
length of the input labeled data is IV, the encoder LSTM en-
codes its information to the hidden vector hy and the memory
cell cn.

Additive perturbation

hy =

cN =

hn + Ah
cN + A° R
where A" and A€ are vectors whose size are same with
hn and ¢y and consisting of independent random vari-

ables sampled from an uniform distributions between
—Pa and pq.

Multiplicative perturbation

hn =

cN =

h,N@Mh
cN O M€,

where M" and M¢ are vectors whose size are same
with hn and cy and consisting of independent random
variables sampled from an uniform distributions between
1 —pm and 14 p,,. ® denotes an element-wise product.

When generating sequences, the hidden state and the mem-
ory cell of the decoder LSTM are initialized with hy and ¢
instead of hy and cy. By adding perturbation, we can expect
that sequence that are not identical to the input sequence is gen-
erated. Since the sequence is generated with being constrained
by the decoder LSTM, sequences similar with the labeled train-
ing data can be generated.

3.2. Various architectures

We explain the various architectures for labeled data generation
as shown in Figure 3.

3.2.1. Model-1 (Figure 3(a))

Model-1 uses the standard encoder-decoder LSTM with using
the pair of word and label as a modeling unit. When training,
the loss function is set to maximize the log probability of the
output sequence of pairs of word and label. While this Model-1
can only generates the pair appearing in the training data, a wide
variety of sequences can be generated by adding perturbation.

3.2.2. Model-2 (Figure 3(b))

Model-2 has the same encoder LSTM with the Model-1, but
has two independent output sequences for words and labels.
This means that this model has two different decoder LSTMs
for word sequences and label sequences. Two loss functions to
maximize the log probabilities of the output word sequences
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(b) Model-2: input is sequence of pairs of word and label,
and output is separate word and label sequences.
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(c) Model-3: input is sequence of pairs of word and label, and
output is separate word and label sequences where dependency
from word to label is modeled.
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(d) Model-4: input is sequence of pairs of word and label, and
output is separate word and label sequences where dependency
from label to word is modeled.

Figure 3: Various types of encoder-decoder models for labeled
data generation. Input is manually labeled data of word se-
quence W' = {W7, W4} whose labels are L* = {L1, L1}.
The order of the input sequences are reversed when encoded
by the encoder LSTM. Output is WC = {WL , W5} whose
labels are L° = {L{,LSY. When training the model, in-
put and output are identical as W' = W and L' = L°
and perturbations are not added to the hidden vector and the
memory cell. Please note that the length of output sequences is
not always the same with that of input sequences when gener-
ating sequences. W, : L stands for pair of word and label.
“<BOS>" and “<EOS>" are beginning and ending symbols
for output sequences. “Emb.” and “LSTM” boxes represent
embeddings and LSTM layers. Softmax layer on top of LSTM
layer in decoder LSTM is not depicted for clarity.

and the output label sequences are summed up for training.
Since output word sequences and label sequences are indepen-
dently generated, only the combinations of generated word and
label sequences that have the same length are used as the gen-
erated labeled data.
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Figure 4: LSTM-based slot filling model. Softmax layer on top
of LSTM layer is not depicted for clarity.

3.2.3. Model-3 (Figure 3(c))

Model-3 is an enhanced version of Model-2. We feed the gener-
ated word from the lower output sequence to the decoder LSTM
for label sequence generation as shown in Figure 3(c).

3.2.4. Model-4 (Figure 3(d))

Model-4 is another enhanced version of Model-2. The output
sequences in this model are reversed from Model-3, where the
generated label from the lower output sequence is fed to the de-
coder LSTM for word sequence generation as shown in Figure
3(d).

4. Experiments

We first explain the experimental setup and procedure. Then we
report the performance of the slot filling model trained by using
the generated data and add analysis on the generated data.

4.1. Experimental setup and procedure

We used the ATIS corpus, which has been widely used as the
benchmark for SLU [2, 25, 26, 27]. Figure 1 shows an exam-
ple sentence and its semantic slot labels in In-Out-Begin (I0B)
representation. The slot filling task was to predict the slot label
sequences from input word sequences.

The ATIS corpus contains the official split of the training
data of 4,978 sentences and evaluation data of 893 sentences.
The unique number of slot labels is 127 and the vocabulary size
is 572. We randomly selected 80% of the original training data,
calling it as train-set, and named the remaining 20% as heldout-
set. The original evaluation data is called as evaluation-set.

The basic experimental flow is as follows:

1. Train the encoder-decoder model for labeled data gener-
ation using the train-set. The same data in the train-set is
used for the input and output when training the encoder-
decoder model.

2. Generate the sentences using the trained encoder-
decoder model and the labeled data in the train-set. 4
labeled sequence are generated from each manually la-
beled sequence in the train-set.

3. Train the LSTM-based slot filling model with using the
train-set and the labeled data generated in the previous
step. The total size of the training data is 5 times larger
than the original train-set.

4. Evaluate the performance of the LSTM-based slot filling
model on the evaluation-set.

The performance of slot filling was measured by the F-
score: Fi = %m, where precision is the ratio of
the correct labels in the system’s output and recall is the ratio of
the correct labels in the ground truth of the evaluation data [28].

As for the model for slot filling, we used the LSTM-based
slot filling model, that has been reported to achieve sufficiently
competitive Fi-score [12, 29]. The architecture of the LSTM-
based slot filling model is depicted in Figure 4.



Perturbation F'i-score

Baseline - 94.77
No Perturbation - 94.85
pa = 0.2 95.08

Additive pe = 0.4 94.53
pa = 0.6 94.87

Ppa = 0.8 94.76

Ppm = 0.2 94.90

Multiplicative pm = 0.4 95.31
Pm = 0.6 94.66

Pm = 0.8 94.26

Table 1: Fi-score with data generation by Model-1. “Base-
line” did not use any additional training data. “No Perturba-
tion” used Model-1, but did not add perturbation. “Additive”
perturbations were sampled from [—pa, +pa]. “Multiplicative”
perturbations were sampled from [1 — pm, 1 + prm].

For training the encoder-decoder model and the LSTM-
based slot filling model, we randomly initialized parameters in
accordance with the normalized initialization [30]. We used
ADAM for learning rate control [31] and dropout for general-
ization with a dropout rate of 0.5 [32, 33].

From a pilot experiment, we found that a small encoder-
decoder model yields collapsed sequences by adding pertur-
bation, which is reasonable since the encoded information is
packed into a small size of vector and it is sensitive to the pertur-
bation. Thus, we set the number of hidden units to sufficiently
large size, 1,024, for the encoder-decoder model. The dimen-
sion of the embeddings for the pair of word and label was set to
64.

The hyper-parameters of the LSTM-based slot filling model
were chosen according to the heldout-set, which means that
we reported the F7-score on the evaluation-set with the hyper-
parameters that achieved the best F';-score on the heldout-set.

4.2. Experimental result

Table 1 shows the results with trying various perturbation val-
ues for Model-1. Since Model-1 with no perturbation basically
generates the same labeled data with the train-set, F-score of
94.85 which is similar with 94.77 of the baseline that only used
the original train-set was obtained. By looking at the rows of ad-
ditive perturbation and multiplicative perturbation, we obtained
improvement with smaller perturbation values. By increasing
Pm to 0.8 for multiplicative perturbation, we saw a significant
drop in the Fi-score by the trained LSTM-based slot filling
model. While the decoder LSTM has strong constraints to gen-
erate the reasonable labeled data, large perturbation to the initial
hidden state and the memory cell resulted in generating the use-
less labeled data.

Table 2 lists the Fi-scores by the LSTM-based slot fill-
ing model trained using the generated labeled data by Model-
1, Model-2, Model-3, and Model-4. By looking at the rows
of Model-2, we found improvement by using the perturbation
comparing with the row without perturbation. For Model-3, the
best [ -score was worse than Model-2 while improvement by
using perturbations was confirmed. Model-4 performed worse
than the baseline. Dependencies between words and labels in-
troduced for Model-3 and Model-4 were not effective in this
task.
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Model Perturbation Fi-score

Baseline - 94.77
- 94.85

Model-1 Additive 95.08
Multiplicative 95.31

- 94.75

Model-2 Additive 95.32
Multiplicative 94.94

- 94.81

Model-3 Additive 95.16
Multiplicative 95.03

- 94.68

Model-4 Additive 94.75
Multiplicative 94.68

Table 2: F'i-score with data generation by Model-1, Model-2,
Mode-3, and Model-4. “Baseline” did not use any additional
training data. For each model, 3 rows correspond to no pertur-
bation, additive perturbation, and multiplicative perturbation.
We tried various perturbation values p, and py, and reported
results of model that achieved best for heldout-set.

4.3. Analysis on generated labeled data

The best F-score of 95.32 was obtained with Model-2 by set-
ting p, = 0.2 and p,,, = 0.0. We investigated the generated la-
beled data by this configuration. We found 11 new pairs of word
and label that are not included in the train-set. 3 pairs were ap-
propriate and the others were not correct. While the number of
the appropriate pairs was limited, we can select the appropriate
pairs with other methods such as using generated frequency or
examining the order of labels in the generated data [16]'. Com-
bining with these method is our future work.

We also investigated the number of new pairs obtained by
Model-3 and Model-4 with the same configuration of p, = 0.2
and p,, = 0.0. We found 4 new pairs from Model-3, one of
which was correct, and no new pairs from Model-4. Training
the decoder LSTMs with dependencies between words and la-
bels becomes similar to training the decoder LSTM with using
a pair of word and label as a modeling unit like Model-1, and
thus limits the capability of generating new pairs.

5. Conclusions

We proposed a method to generate labeled data from a small
amount of manually labeled data with using the encoder-
decoder models. We confirmed that by adding perturbations
to the encoded vector, variety of labeled data can be generated,
which resulted in the improvement of F'; -score of the slot filling
model over the competitive LSTM-based slot filling model.

We also confirmed that new pairs of word and label can be
obtained by the encoder-decoder model that has separate output
sequences for word and label, while the ratio of the correct pair
was not so high. We would like to pursue a method to purify the
generated pairs.

As for perturbations, we simply used additive and multi-
plicative perturbation sampled from normal distributions. We
would like to explore more sophisticated perturbation.

We focused on labeled data generation in this paper and
using the generated data with other sophisticated modeling of
slot filling [34, 35] is our future work.

UIf “B-ToCity” label comes after “I-ToCity” label, this order of la-
bels is not appropriate.
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