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Abstract

This paper aims to enhance spoken language identification
methods based on direct discriminative modeling of language
labels using deep neural networks (DNNs) and long short-
term memory recurrent neural networks (LSTM-RNNs). In
conventional methods, frame-by-frame DNNs or LSTM-RNNs
are used for utterance-level classification. Although they have
strong frame-level classification performance and real-time effi-
ciency, they are not optimized for variable length utterance-level
classification since the classification is conducted by simply av-
eraging frame-level prediction results. In addition, the simple
classification methodology cannot fully utilize the combination
of DNNs and LSTM-RNNSs. To address these issues, our idea is
to combine the frame-by-frame DNNs and LSTM-RNNs with
a sequential generative model based classifier. In the proposed
method, we regard posteriorgram sequences generated from a
frame-by-frame classifier as feature sequences, and model them
with respect to each language using language modeling tech-
nologies. The generative model based classifier does not model
an identification boundary, so we can flexibly deal with vari-
able length utterances without loss of conventional advantages.
Furthermore, the proposed method can support the combina-
tion of DNNs and LSTMs using joint posteriorgram sequences,
those of generative modeling can capture differences between
two posteriorgram sequences. Experiments conducted using the
GlobalPhone database demonstrate the proposed method’s ef-
fectiveness.

Index Terms: Spoken language identification, DNNs, LSTM-
RNNs, generative models, RNNLMs

1. Introduction

Spoken language identification (LID), which automatically de-
termines a language label from input utterances, is a fundamen-
tal technique for multilingual speech applications [1, 2]. A lot
of technologies have been proposed for LID such as phoneme-
based approaches or i-vector based approaches [3, 4]. Addi-
tionally, due to recent advances in deep learning (DL) tech-
nologies, powerful modeling techniques including deep neural
networks (DNNs) or long short-term memory recurrent neural
networks (LSTM-RNN5s) [5] have been examined for LID fields
[6]. Some studies reported that state-of-the-art performance can
be obtained by DL technologies.

DL technologies can be split into two main streams for
LID application [6]. One of the main streams is the indirect
approach; it utilizes DL-based models intended for other us-
ages. Most of these models are trained for predicting sub-
phonetic units called senones [7]. Indirect methods are often
used for extracting statistics in i-vectors [8] or extracting ad-
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ditional features for other back-end systems [9, 10, 11]. The
other main stream is the direct discriminative modeling ap-
proach [12, 13, 14, 15]. DL-based models are constructed for
directly classifying language labels. This paper focuses on en-
hancing the direct discriminative modeling approach.

In the direct discriminative modeling approach, frame-by-
frame DNNs and LSTM-RNNSs are often used [12, 13, 14, 15].
Frame-by-frame models can determine a frame-level posterior
probability for each language label. In this case, utterance-level
classifiers can be constructed by simply averaging the frame-by-
frame prediction results. They offer early determination of the
language label at any timing, and so are suitable for real-time
applications. In addition, previous studies reported that they
deal with short utterances better than i-vector based schemes.

However, there are two issues with the conventional di-
rect discriminative modeling approach. First, frame-by-frame
discriminative models are not optimum for variable length
utterance-level classification although their frame-level predic-
tion performance is significant. In fact, the utterance-level score
was calculated by simply averaging the frame-level prediction
scores in previous works. If we directly handle variable-length
utterances in discriminative modeling, it is necessary to rep-
resent them using compact representations such as i-vectors
[16, 17]. Unfortunately, the use of compact representations
eliminates the advantage of support for real-time applications
since they are often extracted after utterance completion. The
second issue is that the conventional methods cannot fully uti-
lize the combination of DNNs and LSTM-RNNs because the
simple averaging strategy cannot flexibly handle the differences
between predicted sequential results.

Our idea for addressing the issues is to use a sequential
generative model based classifier to combine frame-by-frame
discriminative models. The generative model based classifier is
suitable for variable-length sequences because it does not model
identification boundaries. In fact, outputs in the conventional
frame-by-frame classifier, i.e., posteriorgrams, can be regarded
as feature sequences [18, 19]. By constructing a sequential gen-
erative model based classifier using the features, we can expect
improved flexibility for variable-length utterances without los-
ing frame-by-frame processing. Furthermore, sequential gen-
erative models can use joint sequences to handle multiple se-
quences in a single framework. Sequential generative modeling
is expected to yield a classifier that can capture the differences
between individual sequences.

This paper is an initial study that uses a sequential gener-
ative model based classifier to integrate frame-by-frame DNNs
and LSTM-RNNSs. To model the posteriorgram outputs by the
model, this paper uses language models (LMs). Thus, we to-
kenize the posteriorgrams, and model them as an LM with re-
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spect to language labels. The LM-based classifier will well per-
form in LID applications since similar ideas are found in tra-
ditional phoneme-based approaches [20, 21]. Additionally, we
enhance the proposed method with the following two expan-
sions. First, we introduce two state-of-the-art LMs, hierarchical
Pitman-Yor LMs (HPYLMs) [22] and RNNLMSs [23], for se-
quential generative modeling. Second, we deal with DNNs and
LSTM-RNNSs simultaneously by sequential generative model-
ing of their joint posteriorgrams. In our evaluation, we compare
the proposed method with the conventional direct discriminative
modeling methods including bidirectional LSTM-RNNSs [24] in
an identification task.

This paper is organized as follows. Section 2 describes
the conventional classification framework based on frame-by-
frame DNNs and LSTM-RNNs. In Section 3, we detail novel
techniques based on the generative modeling of posteriorgrams
extracted from conventional method. Section 4 describes our
experiments using the GlobalPhone database [25]. Section 5
concludes this paper.

2. LID using Frame-by-Frame DNNs
and LSTM-RNNs

2.1. Direct discriminative modeling

LID is defined as the problem of determining language label [
from input utterance X = xi,--- ,xr, where x; means an
acoustic feature vector of the ¢-th frame. Actually, since in-
put utterance length 7" is variable, frame-by-frame discrimina-
tive models are often used [12, 13, 14, 15]. In this case, we
can compute an utterance-level score by simply averaging the
frame-level prediction score. Thus, LID based on frame-by-
frame direct discriminative modeling is defined as:

T
- 1
[ = arg maXT;logP(HX,t,@), (1)

lel

where L represents a set of target languages, and © is a model
parameter of a discriminative model. P(I|X,t, ®) represents
a posterior probability of label [ in the ¢-th frame. This determi-
nation can be conducted in an online manner. Thus, it supports
determination even before reaching the end of the utterance.

2.2. Frame-by-Frame DNNs and LSTM-RNNs

In order to obtain the frame-level posterior probability, frame-
by-frame DNNs and LSTM-RNNs can be used. Each model
can be implemented in an online (left-to-right) manner.

DNNs are full-connected feed-forward NNs with multiple
hidden layers. When using DNNSs, the input layer is composed
by stacking a currently-being-processed frame and its left-right
contexts. The DNN-based frame-level posterior probability is
calculated as:

P(l|X,t, ®DNN) = P(l|’it,®m\]]\]), (2)

1, 3)

where M denotes context size in the input layer.

Unidirectional LSTM-RNNs can automatically store previ-
ous long-range information in hidden layers without stacking
previous frames [5]. The LSTM-based frame-level discrimina-
tive probability is calculated as:

. T T T
1t = [wthf" sy Lty s Ly M

P(l|X,t,Orsm) = P(l|xt, ht—1, Orsm) 4
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where h;_1 represents outputs of the previous hidden layers.
Note that unidirectional LSTM-RNNs can be fused with DNNs
by averaging each log probability [13].

In addition, we can use bidirectional LSTM-RNNs, which
can utilize entire utterance information in the hidden layers if
batch implementation is allowed. [24]

3. LID based on Sequential Generative
Modeling of Posteriorgrams

3.1. Overview

This paper proposes an LID method that combines conventional
frame-by-frame DNNs and LSTM-RNNs with sequential gen-
erative model based classifier. In the proposed method, we re-
gard outputs of the conventional frame-by-frame classifier, i.e.,
posteriorgrams, as features. Posterior probabilities in the ¢-th
frame is represented as an | £|-dimensional vector:

Yt = [P(l1|X7t7®)7 7P(l|£||X7t7e)]T (5)

The proposed method consists of the following steps. First,
in a tokenization step, the posteriorgram sequence of target ut-
terance Y Y1, -+ ,yr is converted into token sequence
S = s1,--+,s7. Next, in a classification step, the tokenized
posteriorgram is fed into each LM constructed for each lan-
guage label, and a language label of the target utterance is de-
termined by calculating the generative probabilities.

3.2. Tokenizer

In order to model the posteriorgram using generative LMs, a
tokenizer is necessary. The tokenizer is trained from the pos-
teriorgrams of training data sets. To this end, this paper uses
K-means clustering with Euclidean distance. In K -means clus-
tering, K centroids are trained from all of the posteriorgrams in
training data sets. The centroids are denoted as ¢1, - - - , Ck.
In a tokenization step, a posteriorgram is tokenized in
a frame-by-frame manner. Thus, tokenization can be imple-
mented in an online manner. The tokenization of y; is given
by:
s¢ = arg min D(¢k, ye),
kel,- K

(6)

where D denotes the Euclidian distance of two vectors. Thus,
the posteriorgram is converted into an index number sequence
of the nearest neighbor centroids.

3.3. Classifier

An LID classifier is composed by LMs that are constructed from
the tokenized posteriorgrams for each language label. The clas-
sification is defined as:

[ = arg max P(S6)),
lec

@)

where 0, denotes a model parameter of LM for language label [.
This determination can be also conducted in an online manner.
Thus, the proposed method supports early determination as does
the conventional classifier.

The LM for language label [ is trained from tokenized pos-
teriorgrams of the target language in the same training data sets
as those for the frame-by-frame DNNs and LSTM-RNNs. This
paper employs two LMs; HPYLMs and RNNLMs.

HPYLMs are Bayesian n-gram LMs, which are known to
be one of the most accurate n-gram LMs [22]. HPYLMs define
the generative probability of the ¢-th token, s, given its N — 1



Table 1: Experimental data sets: number of utterances.

| [ Train | Valid  Test |
French (ER) 9862 (253h) | 308 308
German (GE) 9,496 (17.1 h) 284 303
Korean (KO) 7,794 (20.1 h) 153 160
Mandarin (MA) 9,608 (29.3 h) 203 273
Portuguese (PO) 9,568 (24.5h) 315 256
Russian (RU) 11,549 (24.8 h) 234 269
Shanghai (SH) 2,179 (79 h) 137 227
Spanish (SP) 6,500 (20.8 h) 131 202
Swedish (SW) 11,168 (204h) | 154 381
Thai (TH) 13,739 (27.3 h) 100 150
Turkish (TU) 6,489 (159 h) 121 281
Vietnamese (VI) 18,089 (18.6 h) 231 371

[ALL [ 116041 (252.0h) | 2,371 3,181 |

tokens sij\, 41- The generative probability of token sequence
S is defined as:

T
HP(3t|Szt::}v+179?pY)-

t=1

P(S|6}"") ®)

RNNLMs are state-of-the-art LMs, and flexibly take long-
range context information into consideration based on their re-
current structure [23]. In RNNLMs, the generative probability
of token sequence S is defined as:

T
P(S|o™) =[] P(stlse—1,ze-1.60™),

t=1

©))

where z;_1 denotes previous the output of the hidden layer. It
includes long-range context information while n-gram LM uses
only n — 1 context information.

3.4. Joint posteriorgram

We can deal with multiple posteriorgrams individually gener-
ated from different frame-by-frame discriminative models in
the same framework by using a joint posteriorgram. A joint
posterior-based feature vector is defined as:

()T (U)THT
b ]

Yy (10)

i = [y

where U denotes the number of posteriorgrams composing the

joint posteriorgram. For example, yél) is extracted from the

DNN and y§2) is extracted from the unidirectional LSTM-RNN.
Joint posteriorgram Y = i, -- ,yr is tokenized instead of
single posteriorgram Y.

4. Experiments
4.1. Setups

Our evaluation employed GlobalPhone, a multilingual data cor-
pus [25]. GlobalPhone includes spoken utterances read by na-
tive speakers in several languages. The average utterance dura-
tion is about 7 seconds. This paper used 12 languages and we
split them into training set (Train), validation set (Valid), and
test set (Test). Details of the number of utterances and the data
size are shown in Table 1.

In our experiments, we used 38 dimensional MFCC co-
efficients (12MFCC, 12AMFCC, 12AAMFCC, Apower and
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Table 2: Frame-level LID performance: FER (%).

| | Valid Test |
DNN 30.20 35.31
LSTM-RNN 1641 22.36
BLSTM-RNN 4.20 7.14

AApower) as an acoustic feature; extraction used 20 msec long
windows shifted by 10 msec.

For the evaluations, we constructed three frame-by-frame
discriminative models from the training set.

* DNN: DNN with 5 hidden layers and 1024 sigmoid
units. The input layer was fed with 21 frames formed
by stacking the current processed frame and its £10
left-right context. For training, we used discriminative
pre-training to construct an initial network [26], and
fine-tuned it using mini-batch stochastic gradient descent
(MB-SGD). The validation set was used for early stop-
ping.

¢ LSTM-RNN: Left-to-right unidirectional LSTM-RNN
with 3 hidden layers and 512 units. The input was just
the target frame without stacking other frames. For train-
ing, we used discriminative pre-training to construct an
initial network, and fine-tuned it using MB-SGD and
back propagation through time algorithm. The valida-
tion set was used for early stopping.

* BLSTM-RNN: Bidirectional LSTM-RNN with 3 hid-
den layers and 512 nodes. The training strategy was
same as for LSTM-RNN.

These models were used for both the conventional method and
the proposed method. Also, we evaluated the combination of
DNN and LSTM-RNN.

In addition, we prepared additional components for the pro-
posed method. For constructing a tokenizer, the number of cen-
troids in K -means clustering was set to 64 and 128. The cen-
troids were trained from the posterior sequences of the training
data sets. We used two LMs for generative modeling of the to-
kenized posteriorgrams.

« HPYLM: Token-based 3-gram HPYLM. For training,
we used 200 iterations for burn-in, and collected 10 sam-
ples.

« RNNLM: Token-based RNNLM with 200 hidden units.
In training, the validation set was used for early stopping.

Both LMs are constructed from tokenized posteriorgrams of the
training data set. In these settings, some hyper-parameters such
as mini-batch size were adjusted using the validation set.

4.2. Results

First, we investigate the frame-level LID performance of DNN,
LSTM-RNN, and BLSTM-RNN since the utterance-level per-
formance is affected by the frame-level performance in both the
conventional and proposed methods. Table 2 shows the frame-
level error rate (FER) for the validation set and test set.

The results show that DNN was inferior to LSTM-RNN
and BLSTM-RNN. The highest performance was attained by
BLSTM-RNN since it can use all of the utterance information
for determining the target frame. This suggests that frame-level
performance depends on whether long-range context informa-
tion can be used or not.



Table 3: Utterance-level LID performance: UER (%)

Conventional methods Valid Test

Discriminative models lsec 2sec 3sec Whole lsec 2sec 3sec Whole
(1. DNN 755 211 0.76 0.54 | 11.82 632 4.53 3.12
2). LSTM-RNN 1434 422 245 091 | 16,54 7.11 5.22 2.55
3). DNN+LSTM-RNN 924  3.04 1.40 038 | 11.67 5.19 4.00 2.17
4). BLSTM-RNN - - - 0.55 - - - 1.58

Proposed methods Valid Test

Discriminative models  LMs F##tokens lsec 2sec 3sec Whole l1sec 2sec 3sec Whole
(5). DNN HPYLM 64 7.61 1.95 0.81 043 | 1045 539 3.09 1.51
6). 128 8.02 222 0.5 047 | 11.17 551 4.03 2.21
). RNNLM 64 7.68 1.85 0.89 048 | 1035 5.19 233 1.07
(8). 128 8.12 212 097 0.64 | 1135 532 378 2.02
9). LSTM-RNN HPYLM 64 | 11.52 3.46 1.52 0.64 | 13.43 525 353 1.22
(10). 128 | 1094 3.42 1.95 0.68 | 13.74 522 3.68 1.29
(11). RNNLM 64 | 10.68 2.63 1.23 0.51 | 12.05 459 321 1.14
(12). 128 | 10.09 2.75 1.40 0.72 | 1195 5.16 3.37 1.26
(13). DNN+LSTM-RNN HPYLM 64 6.88 1.69  0.68 0.30 950 359 221 0.92
(14). 128 6.75 1.52  0.64 0.29 934 334 173 0.63
(15). RNNLM 64 6.67 1.61  0.64 0.26 859 3.05 1.89 0.76
(16). 128 650 148 0.04 0.30 893 299 1.1 0.50

Table 4: Utterance-level LID performance per language label with 3 sec determination using test set: UER (%).

| [ R_GE KO MA PO RU SH SP SW TH TU VI ALL |
3. 000 000 000 074 040 670 2335 1387 344 000 356 000 4.00
(16). [ 000 034 000 037 235 484 221 644 132 000 143 000 151

Next, we investigated utterance-level LID performance us-
ing an identification task that evaluates hard decision accuracy
by selecting the top scored language; accordingly, utterance-
level error rate (UER) was used as the evaluation metric. In
addition, for evaluation of early determination performance, we
also examined evaluation using the results achieved after 1 sec,
2 sec, and 3 sec. Note that the number of utterances in early
determination is the same as in whole-utterance classification.

The results for the conventional methods are shown on lines
(1) to (4) of Table 3. LSTM-RNN showed higher performance
than DNN in classifying whole utterances. On the other hand,
LSTM-RNN was inferior to DNN in the early determination
task although LSTM-RNN was quite superior to DNN in terms
of frame-level performance. This suggests that frame-level clas-
sification performance is not always related to utterance-level
classification performance. In addition, the combination of
DNN and LSTM-RNN was not always effective for utterance-
level classification. In fact, their combination degraded the per-
formance for the validation set. It seems that the conventional
combination method that averages both scores is directly af-
fected by individual classification performances. Among the
conventional methods, the highest performance was attained by
BLSTM-RNN when classifying whole utterances but we note
that it cannot be used for real-time applications.

The results of the proposed method are shown on lines (5)
to (16) of Table 3. They confirm that the proposed methods
that use the generative model based classifier is superior to the
conventional methods in most conditions. In addition, RNNLM
was superior to HPYLM for sequential generative modeling in
most conditions. It seems that the ability of RNNLM to capture
long-range context information yielded the improvements. In
addition, the combination of DNN and LSTM-RNN showed su-
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perior performance to using either DNN or LSTM in isolation
in all conditions. This suggests that the proposed method can
utilize the combination of different posteriorgrams. The best re-
sult was obtained by RNNLM modeling of 128-tokenized joint
posteriorgrams extracted from both DNN and LSTM-RNN. The
results surpassed those of BLSTM-RNN for whole utterances.
Table 4 shows the best results among the conventional
method and those for the proposed method per language label
on the test set when classifying is stop after 3 sec. They show
that the conventional method was particular inferior to the pro-
posed methods for Spanish and Shanghai. In fact, the conven-
tional method mistook Spanish for Portuguese, and Shanghai
for Mandarin. The proposed method could decrease such errors
without degrading the performance for other languages.

5. Conclusions

In this paper, we presented a novel method that uses a sequential
generative model based classifier to combines frame-by-frame
DNNs and LSTM-RNNSs. In the proposed method, posterior-
grams generated from conventional frame-by-frame DNNs and
LSTM-RNNS are tokenized, and the label determination is con-
ducted by calculating the generative probabilities of tokenized
sequences for each per language label. The proposed method
matches the real-time efficiency of the conventional method and
offers flexibility in terms of utterance length. Also, it can ef-
fectively combine DNNs and LSTM-RNNSs through the gen-
erative modeling of joint posteriorgrams. Experiments using
the GlobalPhone database showed that the proposed method of-
fers better LID performance than the conventional method. The
best results were obtained by using joint posteriorgrams and an
RNNLM based classifier. In future work, we will confirm the
proposed method’s effectiveness in a verification task.
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