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Abstract
The importance of the phase information of speech signal is
gathering attention. Many researches indicate system combi-
nation of the amplitude and phase features is effective for im-
proving speaker recognition performance under noisy environ-
ments. On the other hand, speech enhancement approach is
taken usually to reduce the influence of noises. However, this
approach only enhances the amplitude spectrum, therefor noisy
phase spectrum is used for reconstructing the estimated signal.
Recent years, DNN based feature enhancement is studied inten-
sively for robust speech processing. This approach is expected
to be effective also for phase-based feature. In this paper, we
propose feature space enhancement of amplitude and phase fea-
tures using deep neural network (DNN) for speaker identifica-
tion. We used mel-frequency cepstral coefficients as an ampli-
tude feature, and modified group delay cepstral coefficients as
a phase feature. Simultaneous enhancement of amplitude and
phase based feature was effective, and it achieved about 24%
relative error reduction comparing with individual feature en-
hancement.
Index Terms: speaker identification, feature enhancement,
deep neural network, phase information

1. Introduction
Today, the performance of speaker recognition system is ex-
tremely high in clean conditions. However, in the real condi-
tions, the performance is significantly degraded by environmen-
tal noise. Speech enhancement approach (i.e. Wiener filtering)
is taken usually for noise robust speech processing. However,
the phase spectrum cannot be enhanced by such methods, unlike
the amplitude spectrum, therefore this approach has not been
applied to the phase based processing [1][2].

In recent years, the importance of the phase information
is attracting attention [1]. Because of its complicated struc-
ture, the phase spectrum of the speech is ignored in many ap-
plications such as speaker recognition. Nakagawa et al. and
Wang et al. proposed phase normalization method which ex-
presses the phase difference from base-phase value [3]-[8], and
this is called relative phase. Relative phase features were ef-
fective for speaker recognition under noisy environments with
combination with amplitude feature (Mel-Frequency Cepstral
Coefficients: MFCC) [9] because of its complementarity. To
manipulate the phase information more simply, the group de-
lay which is defined as the frequency derivative of the phase
spectrum is often used. Hegde et al. proposed modified group
delay cepstrral coefficients (MGDCC) [10]-[15]. They reported
the MGDCC was effective for speaker recognition under noisy

environments. As stated above, the phase information is con-
sidered significant even in the noisy environments.

However, the phase information had been ignored at the en-
hancement approach. For example, even in the state-of-the-art
speech enhancement method, the phase spectrum of the noisy
speech is used for signal reconstruction [2][17]. In this context,
the iterative phase estimation method called Griffin and Lim al-
gorithm was proposed by Griffin et al. for signal reconstruction
[22][23]. This algorithm requires a huge number of iterative
FFT, hence this approach is not realistic. On the other hand, the
feature space enhancement method has been developed which
is based on deep neural network technique [16]-[20]. DNN can
learn the nonlinear transformation from a noisy feature vectors
to clean ones. Zhang et al. applied DNN-based feature trans-
formation for reverberant speaker recognition [18]. They trans-
formed reverberant MFCC to clean MFCC, then the speaker
recognition performance was improved. However, MFCC only
contains amplitude information and ignores the phase, there-
fore the DNN enhancement might be incomplete. Evidently,
Weninger et al. proposed a phase-sensitive error function for
deep LSTM speech enhancement, and the method was effective
[21]. However, they did not estimate phase of clean signal.

In this paper, we propose feature space enhancement using
DNN for phase based feature. The phase based features could
not be used effectively in noisy environments so far, however,
DNN based feature enhancement approach might be effective
because of its nonlinearity. In addition, we propose joint feature
enhancement by DNN. The DNN is expected to be able to use
both amplitude and phase information simultaneously in one
network. By covering each information, the feature enhance-
ment is expected to be more accurate.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the method of joint feature enhancement using
DNN. Section 3 introduces the modified group delay feature
extraction. The experimental setup and results are described in
Section 4, and Section 5 presents our conclusions.

2. DNN based Phase Feature Enhancement
2.1. Conventional DNN-based amplitude feature enhance-
ment

Neural networks are universal mapping functions that could be
used for both classification and regression problem. Deep neu-
ral network has been used for speech enhancement scheme for
quite some time. Fig. 1(a) shows the basic scheme of feature
enhancement using DNN. The network is trained to minimize
mean square error function between the output features and the
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target features.

Er =
1

N

NX
n=1

||X̂n(Yn+τ
n−τ ,W, b)−Xn||22. (1)

Here, Xn indicates the reference (clean) feature, X̂n de-
notes the estimated feature, Yn+τ

n−τ is input noisy feature which
spliced at ±τ context frames, W denotes the weight matrices,
b indicates bias vectors. To predict the clean features from the
corrupted features a sequence of feature vectors around the cur-
rent frame are fed into the DNN. This allows DNN to utilize the
context information to predict the clean feature vector. Then,
the DNN parameters W, b are estimated iteratively by stochas-
tic gradient decent (SGD) using the update equation below.

Δ(Wn+1, bn+1) = (2)

−λ
∂Er

∂(Wn,bn)
− κλ(Wn,bn) + ωΔ(Wn, bn)

Here, n denotes the number of update iteration, λ indicates the
learning rate, κ is weight decay coefficient, and ω is momen-
tum coefficient. This supervised training step often called fine-
tuning. To obtain the initial parameters of the network, RBM
(restricted Boltzmann machine) based unsupervised pretraining
is applied. In [18], the DNN based feature enhancement was
successfully applied to MFCC in reverberant robust speaker
identification. However, MFCC only contains the amplitude
information of the speech, therefore the feature enhancement
might be incomplete.

2.2. Simultaneous Enhancement of Amplitude and Phase
feature

In [10], the robustness of the phase based feature (modified
group delay cepstral coefficients: MGDCC) is reported. DNN
based feature enhancement is expected to be effective also for
phase based feature. However, phase based features contain less
(or no) amplitude information, therefor the enhancement would
be incomplete same as mentioned at 2.1. On the other hand,
augmentation different features with the corresponding speech
feature could improve the performance of the DNN training.
This can be seen in improvement in performance in noise aware
training [12][13]. Another research based in augmentation mi-
crophone distant information in speech recognition task has also
provide with promising result [14].

With this in mind we have proposed the method in which
phase features are augmented into the magnitude feature during
the DNN training. Fig. 1(b) briefly shows the concept of the
joint feature enhancement DNN. We try to enhance the ampli-
tude and phase features simultaneously by concatenating two
features as a input and reference vector, then the network is
tuned to minimize the error of both amplitude and phase fea-
tures. Phase information contain deep relationship with the
magnitude feature, therefore we believe that DNN could uti-
lize this deep relationship to improve the performance of the
identification.

3. Amplitude and Phase-based features
In this work, we use two feature extraction methods to utilize
both amplitude and phase information.

3.1. Mel-frequency cepstral coefficients (MFCC)

MFCC [9] is the most popular feature extraction method for
speech processing including speaker identification. We used
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Figure 1: DNN feature enhancement for amplitude and phase
features

MFCC as an amplitude feature for the DNN input.

3.2. Modified group delay feature

The phase spectrum can be obtained by applying tan−1(·) func-
tion. However, the phase values are stuffed into (−π ≤ θ ≤ π)
range by tan−1(·), and the phase spectrum becomes like a
noise. This problem is called phase wrapping. To overcome
this problem, several phase processing methods are proposed,
and some are applied to speaker identification. The group delay
spectrum is the most popular method to manipulate phase infor-
mation. Group delay τx(ω) is defined as the frequency differ-
ential of the phase spectrum, and it can avoid phase wrapping
problem because tan−1 is not required.

τx(ω) = − d

dω
∠X(ω) (3)

= −Im

„
d

dω
log (X(ω))

«
(4)

=
XR (ω)YR (ω) + XI (ω)YI (ω)

|X(ω)|2 (5)

Here, X(ω) is the Fourier transform of the signal x(n), Y (ω)
denotes the Fourier transform of nx(n), footnote “R” and “I”
indicates the real and imaginary part of the complex. Focusing
on the denominator of eq.(5), the value of τx(ω) would explode
as |X(ω)| approximating to zero. Instead of |X(ω)|, modified
group delay defined as eq.(7) has smoothed |X(ω)| as the de-
nominator.

τm(ω) =

„
τ (ω)

|τ (ω)|
«

(|τ (ω)|)α (6)

τ (ω) =
XR (ω)YR (ω) + XI (ω)YI (ω)

|S(ω)|2γ
(7)
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Table 1: Analysis conditions for MFCC and MGDCC

MFCC MGDCC
Frame length 25 ms
Frame shift 5 ms

FFT size 512 samples
Dimensions 39 39

(13 MFCCs, (Lower 39 points
13 Δs, of the cepstral

and 13ΔΔs) coefficients)

Here, S(ω) is cepstrally smoothed X(ω). The range of α
and γ are (0 < α ≤ 1.0), (0 < γ ≤ 1.0), in this paper,
α = 0.4, γ = 0.9 are used referring [10]. In the experiments,
cepstral coefficients of the τm(ω) (=MGDCC) is used as feature
parameter by applying DCT. [10] reported that the MGDCC
was effective for speaker identification in noisy environments.

4. Experiments
4.1. Experimental setup

We evaluate our proposed method for speaker recognition using
artificial noisy speech. To obtain the noisy speech, clean speech
was added with noise. Speech of the JNAS (Japanese Newspa-
per Article Sentence) database [25] is used as clean speech. The
JNAS corpus consists of the recordings of 270 speakers (135
males and 135 females). The input speech was sampled at 16
kHz. The average duration of the sentences was approximately
3.5 seconds. Noise from JEIDA Noise Database [26] is used
as background noise to create artificial noisy speech.. 4 noise
kinds (air conductor, station, elevator hall, duct), with 4 SNRs
(3, 9, 15, 21 dB) were used for multi-condition training, and 4
noise kinds (computer room, exhibition hall, bubble, road), with
3 SNRs (0, 10, 20 dB) were used for evaluation. Fig. 2 briefly
shows the flow of the experiments. Each speaker was modeled
as 256 mixture multi-condition GMM. 160 sentences (10 clean
sentences × 16 training conditions) were used as training data
for each speaker. 10 other sentences with evaluation noise were
used as test data. In total, the test corpus consisted of about
2700 (10×270) trials for each test condition. The GMM like-
lihood from different kind of features are combined linearly by
following equation.

Ln
comb = αLn

MF CC + (1− α)Ln
MGDCC , (8)

α =
Ln

MF CC

Ln
MF CC + Ln

MGDCC

.

Here, n indicates the speaker index. The feature extraction con-
ditions are shown in Table 1.

For DNN training, multi-condition speech data of all 270
speakers are used. DNN has 3 sigmoid hidden layers and lin-
ear output layer, each hidden layer contains 1024 nodes, and
input features were spliced ±5 frames. Sigmoid type hidden
layer is used here except for the input layer in which linear hid-
den unit were used. To train model for speech enhancement ap-
proach we have done unsupervised RBM (Restricted Boltzmann
Machine) pretraining based on and supervised fine-tuning. To
fasten up the training we first perform RBM wise pretraining.
Kaldi toolkit is used for the pretraining task. The layers are
trained by layer-wise greedy fashions to maximize the likeli-
hood over the training sample. The pretraining only requires
the corrupted version of the utterance. For the back propagation
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Figure 2: The flow of speaker identification experiments

to train the DNN parallel data consisting clean and distorted
version of the same utterance. The objective of this training
is to minimize the Mean Square Error (MSE) between the fea-
tures. Stochastic gradient decent algorithm is used to improve
the MSE error function. In the fine-tuning, the learning rate λ
was 0.01, the weight decay coefficient κ was 0.5, and the mo-
mentum ω was 0.5.

4.2. Experimental results

Fig. 3 shows the feature spectrograms of MFCC and MGDCC
by each enhancement method. Comparing (c) with (d), individ-
ual enhancement illustrated its performance for MFCC. Simi-
larly, (g) and (h) shows the effectiveness of MGDCC enhance-
ment. Moreover, comparing (d) with (e), joint method enhanced
slightly better, and the same tendency can be found in (h) and
(i).

Table 2 shows the experimental results in speaker identifi-
cation accuracy. Raw indicates no enhancement, enhanced (in-
dividual) means individual feature DNN enhancement, and en-
hanced (joint) means simultaneous enhancement of amplitude
and phase feature. MFCC + MGDCC means the speaker iden-
tification accuracy by the score combination. Without enhance-
ment, speaker identification accuracy by using MFCC exceeded
that of MGDCC, however, the score combination of them was
effective. This shows the complementarity of the amplitude and
phase features at speaker identification stage.

By applying individual feature enhancement, the speaker
identification accuracies using each feature were improved.
Therefore the DNN enhancement was effective not only for
amplitude-based feature, but also for phase-based feature
(MGDCC). However, DNN in this experiment only considers
amplitude or phase independently, so we believe the method is
not appropriate to use the whole of useful information.

When joint feature enhancement was applied to amplitude
and phase based feature, the speaker identification accuracies
were greatly improved. Focusing on MFCC, the relative er-
ror reduction of individual feature enhancement was about 15%
(77.5% to 80.8%), and that of joint feature enhancement was
about 37% (77.5% to 85.8%). The similar tendency of accuracy
improvement is shown also for MGDCC. This is because the
DNN could use both amplitude and phase information for the
enhancement, and hence more accurate clean features were es-
timated. At last, the combination of joint enhanced MFCC and
MGDCC achieved the best performance. This result is based
on the complementarity of the amplitude and phase features at
different stages; speaker modeling and feature enhancement.
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Table 2: Speaker identification results by each enhancement method (%)

feature 0 dB 10 dB 20 dB ave.
bubble road server exhibition bubble road server exhibition bubble road server exhibition

raw MFCC 81.5 31.4 6.3 63.9 97.3 88.1 83.0 94.9 97.0 94.8 95.9 95.9 77.5
MGDCC 33.9 17.2 7.1 54.9 95.2 95.2 80.9 97.2 96.7 97.3 97.6 96.6 72.5
MFCC+ 66.5 8.1 29.3 73.2 97.1 92.8 96.3 98.0 98.4 98.8 98.2 98.1 79.6
MGDCC

enhanced MFCC 85.9 46.1 18.7 79.5 95.9 88.9 82.6 96.1 95.5 93.4 90.6 96.4 80.8
(individual) MGDCC 58.2 36.7 17.2 46.8 94.1 94.8 75.2 94.1 96.1 97.4 96.4 96.7 75.3

MFCC+ 81.4 24.1 49.6 69.7 96.1 89.5 96.1 97.3 97.7 97.6 98.3 98.2 83.0
MGDCC

enhanced MFCC 88.2 62.0 33.5 78.0 96.9 94.8 91.1 97.0 97.2 97.1 96.3 97.8 85.8
(joint) MGDCC 76.2 51.5 24.7 77.8 94.6 94.7 84.0 97.6 96.7 97.6 97.8 98.4 82.6

MFCC+ 85.8 37.1 61.9 83.3 96.7 92.7 96.7 98.2 97.6 98.2 98.7 98.8 87.1
MGDCC

(a) speech waveforms

(b) clean MFCC

(c) noisy MFCC

(d) individual enhanced MFCC

(e) joint enhanced MFCC

(f) clean MGDCC

(g) noisy MGDCC

(h) individual enhanced MGDCC

(i) joint enhanced MGDCC

0.0 [sec]0.2 0.4

Figure 3: The spectrograms of each enhancement method: (a)
green line is clean speech, blue is 0 dB noisy speech

5. Conclusions
In this paper, we proposed feature space enhancement using
DNN for amplitude and phase based feature. Simultaneous fea-
ture enhancement of amplitude and phase features by DNN was
evaluated on the experiments. We confirmed the effectiveness
of the DNN based feature enhancement for the phase-based fea-
ture(MGDCC). In addition, the speaker identification perfor-
mance by joint feature enhancement exceeded that of the in-
dividual enhancement. This is because the feature enhancement
got more accurate by covering each information in the network.

In our future work, the more suitable network should be
applied for speaker identification task. For example, multi-task
training (feature enhancement + speaker identification) of DNN
might be effective.
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